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Measuring Quantum Optical Hamiltonians
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We show how recent state-reconstruction techniques can be used to determine the Hamiltonian
optical device that evolves the quantum state of radiation. A simple experimental setup is propose
measuring the Liouvillian of phase-insensitive devices. The feasibility of the method with current te
nology is demonstrated on the basis of Monte Carlo simulated experiments. [S0031-9007(98)0643
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In recent years, the possibility of “measuring” the quan
tum state, after remaining for a long time a mere theore
cal speculation [1], eventually entered the realm of tru
experiments. From the first experimental demonstratio
[2], the so called “homodyne tomography” technique ad
vanced to the level of a quantitative state-reconstructio
technique [3,4], achieving a high degree of reliability in
experiments [5]. This state-reconstruction method is no
ready to be used for concrete applications.

What is the practical use of measuring a quantum stat
Apart from the availability of a kind of “universal detector”
[6] that provides information on all observables at a time
measuring a quantum state is the only way to che
a state preparation within a (generally nonorthogona
set. In turn, the use of homodyne tomography to te
state preparation becomes a way to check the operat
of a quantum device that prepares a chosen state fr
a given one. It is now natural to ask if eventually
it would be possible to recover complete informatio
on the quantum device itself, namely to reconstruct th
detailed form of its Hamiltonian—or, more generally, o
its Liouvillian, as in reality the device is always an open
quantum system. Previous theoretical proposals to give
complete characterization of quantum processes have b
made in Refs. [7,8]. There, the methods are restrict
to systems with finite dimensional Hilbert space, and th
method does not lead to an explicit reconstruction of th
Liouvillian. In this Letter we show how this goal can
be achieved in practice, presenting a simple experimen
setup for measuring the Liouvillian of a phase-insensitiv
optical device, using currently available technology.

The main idea for reconstructing the Liouvillian of
a quantum device is sketched in Fig. 1. One shou
impinge the device with a known input staterin from
a (over)complete set, then determine the staterout at
the output, and finally comparerin to rout. For an
optical device the determination of the output state
made possible by the homodyne-tomography techniqu
Regarding the generation of the set of input stateshrinj,
an experimental method is suggested later in this Lette
The evolution of the state fromrin to rout is governed by
the Green (super)operatorG
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where G has actually a four-index matrix represen-
tation, and on the Fock basis one hasknjroutjml P`

h,k0 Ghk
nmkhjrinjkl. For a device that is homogeneous

along the direction of light propagation the Green super
operator can be written as the exponential of a consta
Liouville superoperatorL as follows:

G  expsL td , (2)

wheret is the propagation time (i.e., the device length)
The Liouvillian L gives the evolution of the state through
an infinitesimal slab of the device media according to th
master equationÙr  L r. In this Letter we restrict our
attention to the case of a perfectly phase-insensitive d
vice: as it will be clear from the following, the case of a

FIG. 1. Sketch of the method for measuring the Liouvillian
of an optical device. A known input staterin is impinged
into the device, and a quantum tomography of the output sta
is performed using a homodyne detector. By scanning a
(over)complete set of statesrin at the input and comparing
them with their respective output states, it is possible to
reconstruct the Liouvillian of the device. The histograms
of homodyne data, here given for the sake of illustration
correspond to a device that consists of an empty cavity, an
with the input states as number statesrin  jnl knj.
© 1998 The American Physical Society 5465
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phase-sensitive device is much more complicated, and w
be analyzed elsewhere [9]. A phase-insensitive device
a device that leaves dephased states as dephased, as
case of a traveling wave laser amplifier. A dephased st
is diagonal in the photon-number representation, with de
sity matrix of the formr 

P`
n0 rnjnl knj, wherehjnlj

denotes the complete set of eigenvectors of the phot
number operatoraya of the field mode with annihilation
operatora. For the evolution of dephased states it is su
ficient to determine the sector of the Green superopera
that evolves dephased states, i.e., the two-index Fock m
trix Gnm  knjG fjml kmjgjnl.

The experimental reconstruction ofLnm could be per-
formed by impinging a number staterin  jnl knj on the
device, and then making the homodyne tomography of t
output state. In this fashion, the number probability di
tribution rksnd of the output coincides with thenth row
of the Green matrixGnm, and by varyingn one would
reconstruct the whole matrix. Since producing numb
states is experimentally difficult, one would try to use co
herent states instead. In this way matrix elements of t
form kcjG fjal kajgjc 0l would be obtained, withjal de-
noting the scanning coherent input state, andjcl andjc 0l
being a couple of vectors of the tomographically reco
structed matrix representation. Unfortunately, the relati
betweenGnm and knjGfjal kajgjnl is highly singular, in-
volving the P function of jml kmj, and hence the matrix
Gnm cannot be obtained in this way starting from exper
mental data. On the other hand, the Fock representat
has a privileged role, because here the Liouvillian matr
has a transparent meaning in terms of creation and an
hilation operators. How to overcome the problem of ge
erating input number-states? Actually, for our purpos
it is sufficient to generate number states with randomn
as far asn is known. This leads us to devise the setu
depicted in Fig. 2. A nondegenerate optical paramet
amplifier (NOPA) with a strong classical pump-down con
verts the vacuum into a pair of twin beams. The tw
beams are used as a random-n Fock state generator, by
measuring the number of photons on one beam (detec
D in Fig. 2) while impinging the other beam on the op
tical device. For quantum efficiencyhD  1 at detector
D, the photodetection would reduce the twin-beam sta
jTBl ~

P`
n0 knjn, nl into a random-n state jnl at the

input of the optical device, with thermal probability dis
tribution wn  jkj2ns1 2 jkj2d, wheren is the measure-
ment outcome atD. The tomographically reconstructed
number probabilitykkjG fjnl knjgjkl of the output state al-
ready would provide thenth row Gkn of the Green matrix.
On the other hand, forhD , 1, a mixed statern will ac-
tually enter the device instead ofjnl knj, as a result of
state reduction atD. The outcomen probability distribu-
tion then becomes

pn  s1 2 jkj2d
shDjkj2dn

fshD 2 1djkj2 1 1gn11 . (3)

One can easily show that the tomographically reco
structed output number probabilityrksnd ; kkjG frngjkl
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FIG. 2. Experimental setup, including the apparatus used
generate the input number statesrin  jnl knj needed for
the tomographical reconstruction of the Liouvillian of a
optical device. A random-n Fock state jnl for the input
beam is achieved by performing photodetection atD on the
other twin beam,n being the measured number of photon
A nondegenerate optical parametric amplifier (NOPA) wit
vacuum input is used to produce the twin beams.

is related to the Green matrix through the identity

rksnd  fshD 2 1djkj2 1 1gn11

3
X̀

m0

µ
m 1 n

n

∂
fjkj2s1 2 hDdgmGk,m1n . (4)

The relation (4) can be inverted as follows:

Gkl 
1

fshD 2 1djkj2 1 1gl11

3
X̀
n0

√
n 1 l

l

! "
shD 2 1djkj2

shD 2 1djkj2 1 1

#n

rksn 1 ld .

(5)

Equation (5) is our algorithm to reconstruct the Green m
trix Gkl from the collection of all tomographically mea-
sured number probabilitiesrksnd for different outcomesn
[in practice the sum in Eq. (5) is truncated at some ma
mumn]. Notice the interplay of the gaink and the quan-
tum efficiencyhD in determining the probabilitypn on
one hand, and in producing the statistical errors in the
constructed Green matrix on the other hand. For decre
ing quantum efficiencyhD ! 0, larger values ofn can be
made more probable by increasing the gain of the NOP
ask ! 12. However, at the same time, convergence
the sum in Eq. (5) becomes slower, and statistical erro
of matrix elementsGkl increase as a result of tomographi
errors onrksnd. Hence, the effect of quantum efficiency
hD, which reduces the size of the viewable matrixGkl ,
can be partially compensated by increasing the gain of
NOPA, however, at the expense of statistical errors f
Gkl . For the tomographic measurement, by increasing t
number of experimental data and usinghH-dependent pat-
tern functions, the method of Ref. [4] can compensate t
effect of low quantum efficiencyhH , 1, that, anyhow,
must be above the thresholdhH  1y2. On the other
hand, for quantum efficiencyhD at detectorD there is
not such a threshold, as one can see from converge
and an error-propagation analysis of Eq. (5).
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The proposed state-reduction scheme—based on tw
beams from a NOPA—is not a new one, and, fo
example, a similar setup has been proposed in Ref. [10
generate Schrödinger-cat states. As such state reductio
the core of our measurement method, we want to exam
it at work in a realistic situation. Typically the NOPA
can be pumped by the second harmonic of aQ-switched
mode-locked Nd:YAG laser, with the output twin-beam
pulsed at a repetition rate of 80 MHz, and with
7 ps pulse duration. Thus, the twin-beam mode wi
annihilatora at the input of the optical device is actually a
wideband mode, with frequency centered around 532 n
and a width of 140 GHz (the inverse of the pulse tim
length). The same Nd:YAG laser beam is used for t
local oscillator (LO) of the homodyne detectorH. In
this way the LO has the same central frequency and
same time envelope of the beam at the input of the opti
device. The integration time at photodetectorD can be
set to 1 ns, which is greater than the pulse width a
shorter than the distance between pulses. In this way e
pulse is completely annihilated by the detectorD during
the integration time, and, correspondingly, the homody
measurement is made with the LO matched on the sa
pulse shape of the signal twin-beam, which means that
measurement is performed on the right wideband mo
after reduction by detectorD. Moreover, the detectorD
and the optical device can be geometrically placed in su
a way that, within a narrow solid angle, the direction o
the respective inputk vectors are the same relative to th
k vector of the NOPA pump, so that state reduction
D affects only radiation at the twink at the input of the
device, so that the state-reduced modes atD and at the
device are perfectly matched.

From the above scenario it follows that the mode wi
annihilatora at the input of the optical device is actually
a wideband mode, and hence we measure the effec
Liouvillian over a 140 GHz bandwidth centered aroun
532 nm. Then, it is clear that all measurements f
different random inputs can be considered as independ
only if the (atomic) relaxation times in the optical device
are shorter than the pulse-repetition period.

Now we show results from some Monte Carlo simu
lated experiments to see our method at work, and estim
the number of measurements needed for the reconstr
tion of Gkl.

The simplest phase-insensitive device is the pha
insensitive linear amplifier (PIA), with LiouvillianL

L  2hAD fayg 1 BD fagj , (6)

where D fugr 8 uruy 2
1
2 suyur 1 ruyud for any

complex operatoru. The Liouvillian matrix has the form

Lnm 8 knjL fjml kmjgjnl

 2hAsm 1 1d fdnm11 2 dnmg

1 Bmfdnm21 2 dnmgj , (7)

wheredik denotes the Kroneker delta. Notice thatLnm is
tridiagonal, the upper diagonal corresponding to the on
in-
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FIG. 3. (a) Linear phase-insensitive laser amplifier withA 
0.1940 and B  0.009 45. Monte Carlo simulation of the
reconstruction of the LiouvillianLnm in Eq. (7) by means of the
proposed experimental setup. The reconstruction is perform
by using two statistical blocks of106 homodyne data for each
of the output states (from a total of2.7 3 1011 of data).
Quantum efficiencies arehD  0.8 andhH  0.85. The gain
of the NOPA is k  0.6. (b) The same reconstruction for
lower quantum efficiencyhD  0.3. Here the gain is set to
k  0.4, and the same number of data is used out of a total
9.9 3 1011.

photon absorptionaray of the loss termD fag, the lower
diagonal corresponding to the one-photon emissionayra
of the gain termD fayg, and the main diagonal containing
the anticommutators coming from both terms.

In Fig. 3a we show a typical result of a Monte Carlo
experiment of the tomographic reconstruction of the Li
ouvillian (7). We used quantum efficiencyhD  0.8 and
hD  0.3 at detectorD andhH  0.85 at the homodyne
detectorH. One can see that the details of the matrix ar
well recovered, and the truncation of the Hilbert space d
mension does not affect the reconstruction. In Fig. 4 th
three main diagonals of the matrix are plotted with the
statistical errors against the theoretical value, showing
very good agreement. The statistical errors are of the sam
size as those of the tomographically reconstructed outp
probabilities. Notice that the number of data1011 1012

needed for this experiment could be collected in a fe
minutes at the repetition rate of 80 MHz. In Fig. 3b we

FIG. 4. The three main diagonals of the LiouvillianLnm of
Fig. 3a are given with their statistical error bars. The full line
is the theoretical value from Eq. (7).
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FIG. 5. Theoretical Liouvillian for a one-atom laser, obtaine
by solving numerically the master equation (8). The paramete
for this laser areC 8

g2

gg'
 12; ns 8

gkg'

4g2  7; s0  1;
f 

gk

2g'
 1; g  1; tp  0.0115.

present a simulated experiment using the very realis
value hD  0.3 of quantum efficiency, however, for the
reconstruction of a smaller matrix5 3 5. Notice that only
the photodetectorD is required to be linear single-photon
resolving, whereas the homodyne detector takes advant
of amplification from the LO, and hence can use high effi
ciency detectors (the valuehH  0.85 here used has been
widely surpassed in the real tomographic experiments,
in Ref. [5]).

As another example, we simulated the experimen
tomography of the effective Liouvillian of a one-atom
traveling-wave laser amplifier. In Fig. 5 the theoretica
Liouvillian matrix is plotted, as obtained from a long-
run quantum jump simulation of the one-atom-laser mas
equation [11]:

Ùr 

(
gk

2
s1 1 s0dD fs1g 1

gk

2
s1 2 s0dD fs2g

1
1
4

√
g' 2

gk

2

!
D fszg 1 gD fag

)
r

1 gfs1a 2 s2ay, rg , (8)

where g is the electrical-dipole coupling,gk and g'

are the decay rates of population inversion and atom
polarization, respectively,g is the cavity decay rate,s0
is the unsaturated inversion (21 # s0 # 1), s6z are the
Pauli matrices (with0, 61 entries), andr now denotes
the joint atom-radiation density matrix. In the quantum
jump simulation, the atom is traced out at a timetp ¿

g
21
k,'. In Fig. 6 a Monte Carlo simulated tomographic

experiment is shown for reconstructing the Liouvillian in
Fig. 5 (the output homodyne probabilities are simulate
starting from the quantum jump Green matrix). One ca
see how the method allows a detailed reconstruction
Lnm, including not only one-photon processes on the thr
main diagonals, but also multiphoton absorptions on t
upper triangular part.
5468
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FIG. 6. Monte Carlo simulated experiment for the recon
struction of the laser theoretical Liouvillian in Fig. 5. Here
hD  0.8, hH  0.85, and k  0.65. A set of 8 3 107 ho-
modyne data have been used of a total of3.7 3 1011 measure-
ments with random photon number at detectorD.

In conclusion, we have seen that it is possible
experimentally reconstruct the Liouvillian of a quantum
optical phase-insensitive device, using homodyne tomo
raphy in a scheme based on parametric down convers
from a NOPA. We have shown the feasibility of the re
construction with an experimental setup that uses stand
technology devices. The problem of low efficiency at th
single-photon resolving detectorD —the major obstacle
for the experiment—has been solved by implementing
compensation algorithm that makes the reconstruction
5 3 5 Liouville matrix possible even forhD  0.3, and
with a number of data that can be collected in a few mi
utes of experimental run.
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