
PHYSICAL REVIEW A JUNE 1998VOLUME 57, NUMBER 6
Generation of phase-coherent states
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An interaction scheme involving nonlinearx (2) media is suggested for the generation of phase-coherent
states~PCSs!. The setup is based on parametric amplification of the vacuum followed by up-conversion of the
resulting twin beam. The involved nonlinear interactions are studied by the exact numerical diagonalization.
An experimentally achievable working regime to approximate PCSs with a high conversion rate is given and
the validity of the parametric approximation is discussed.
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I. INTRODUCTION

Optical processes taking place inx (2) media involve three
light waves, yielding to a considerably rich variety of no
linear phenomena, both in the semiclassical@1# and in the
quantum domain@2#. The quantum statistical properties
the radiation coming from such interactions have attrac
much attention~see, for example, Refs.@3,4#!. Squeezing,
antibunching, and entanglement have been predicted
subsequently observed in a series of fascinating experim
@5,6#. Most of the theoretical approaches to a quantum the
of three-wave devices have been carried out using the
called parametric approximation@7#. In this framework one
of the field modes is in a strong semiclassical coherent s
so that its depletion as well as its quantum fluctuations
be neglected. A fully analytical treatment of the quantu
dynamics is not available, whereas numerical methods h
been developed in the cases of photon number@8# or coher-
ent input states@9#. In this paper the three-wave dynamics
evaluated without an approximation for arbitrary input stat
resorting to the numerical block diagonalization of t
Hamiltonian in invariant subspaces of the constants of m
tion.

In the rotating-wave approximation the nondegener
three-wave interactions are described by the Hamiltonian

Ĥ}x~2!@abc†1a†b†c#, ~1!

wherea, b, andc are the annihilation operators of the thr
relevant modes, whose frequencies satisfy the rela
vc5va1vb . Depending on the input state of the field, t
Hamiltonian~1! describes phase-insensitive amplification
frequency up- or down-conversion. The first kind of proce
occurs in situations with smalla andb and large coherentc,
so that the pumping mode can be considered as undep
and treated as ac number, in the so-called parametric a
proximation. On the other hand, when all three modes p
ticipate in the quantum dynamics we are in the presenc
frequency up- and down-conversion processes.

*Electronic address: http://enterprise.pv.infn.it
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In the present paper we are interested in the situation
picted in Fig. 1, where the interaction Hamiltonian~1! is
applied twice: in the first step as a parametric~spontaneous!
down-conversion of the vacuum state, generating a t
beam on modesa andb, and in the second step as the u
conversion of a twin beam into modec.

This scheme is of interest because, as shown in the
lowing, the outgoing quantum state of radiation closely
sembles the phase-coherent state~PCS!

ul&5A12ulu2(
n50

`

lnun&, ~2!

which has been introduced by Shapiroet al. in Ref. @10#. The
phase-coherent states are interesting because they are
mum phase states for both the Su¨ssmann and the reciproca
peak likelihood@10# measure of phase uncertainty@11,12#.
On the other hand, they also could serve asseedstate@13–
15# in sampling canonical phase distribution by unconve
tional heterodyne detection@16#. Moreover, one should men
tion that the PCSs maintain phase coherence under p
amplification @17#, such that they are privileged states f
phase-based communication channels.

In suggesting the present scheme we have been insp
by Ref. @18#, where an ideal scheme using a photon num
duplicator ~PND! was suggested for PCS synthesis from
twin beam. As a matter of fact, in such photon recombinat
process the PND is well approximated by the up-convers
from Hamiltonian~1! with modec initially in the vacuum

FIG. 1. Scheme of generation of phase-coherent states.
4894 © 1998 The American Physical Society
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57 4895GENERATION OF PHASE-COHERENT STATES
@19,20#. In this paper we show that the interaction sche
sketched in Fig. 1 is indeed effective for the generation
PCSs.

The paper is structured as follows. In Sec. II we brie
describe our approach to the evaluation of the dynamic
the three-wave interactions and discuss the validity of
parametric approximation in the generation of twin-be
state. In Sec. III we analyze the performances of the tw
beam up-conversion in producing phase-coherent state
the second stage of the scheme of Fig. 1. Finally, Sec
closes the paper with some concluding remarks.

II. DYNAMICS OF THE THREE-WAVE INTERACTIONS

The overall input state describing the three involv
modes can be written in the Fock basis as

uc0&5 (
n1 ,n2 ,n3

N

cn1 ,n2 ,n3
un1 ,n2 ,n3&, ~3!

where N is an arbitrarily large integer, which denotes t
largest non-negligible Fock component. In order to comp
the dynamical evolution ofuc&,

uc t&5exp~2 i tĤ !uc0&, ~4!

one should, in principle, diagonalize the full Hamiltonia
matrix in the Fock basis. This becomes a very difficult ta
when the truncationN of the Fock space increases, becomi
unrealistic for N exceeding few teens. However, one c
notice that the Hamiltonian~1! admits two independent con
stants of motion. For the sake of convenience we cho
them as

Ŝ5
1

2
@a†a1b†b12c†c#, K̂5a†a1c†c. ~5!

Conservation ofŜ and K̂ means that subspaces correspo
ing to given eigenvalues of these quantities are invariant
der the action of the Hamiltonian~1! as @Ĥ,Ŝ#50 and

@Ĥ,K̂#50. In other words, the Hilbert spaceHa^Hb^Hc
can be decomposed into the direct sum of subspaces tha
invariant under the action of the unitary evolution operator
Eq. ~4!. Such a decomposition can be written as

Ha^Hb^Hc5 %

s50

N

%

k50

s

Hsk , ~6!

where

Hsk5Span$uk2n& ^ us2k2n& ^ un&%,
~7!

nP@0,min~k,s2k!#,

Span$ % denoting the Hilbert space linearly spanned by
orthogonal vectors within the curly brackets andun1& ^ un2&
^ un3&[un1 ,n2 ,n3& representing the state that is simult
neously the eigenvector of the number operator of the th
modes. The Hamiltonian~1! can be consistently rewritten a
e
f

of
e

-
in

V

e

k

se

-
n-

are
n

e

e

Ĥ5(
s,k

ĥsk , ~8!

with ĥsk acting onHsk only. Correspondingly, the represen
tation for uc0& can be written as

uc0&5(
s50

N

(
k50

s

(
n50

min~k,s2k!

ck2n,s2k2n,n uk2n,s2k2n,n& ,

~9!

which emphasizes the invariant subspaces structure. In
way one needs to diagonalize the Hamiltonian onlyinside
each invariant subspace, thus leading to a considerable
ing of resources.

As a first application of the above method we look for t
conditions under which the parametric approximation is j
tified in describing the process of frequency dow
conversion between a strong semiclassical pump and
vacuum. The input state is given byuc0&5u0,0,a&, uau@1
being the amplitude of a considerably excited coherent st
In the parametric approximation the pump modec in the
Hamiltonian~1! is replaced by thec numbera, thus neglect-

FIG. 2. ~a! OverlapO5A^xu%̂8ux& between the state%̂8 com-
ing from the exact evolution and the twin beamux& expected within
the parametric approximation, as a function of the scaled t
t5kt for different values of the pump input photon number.~b!
Energy conversion rateh as a function of the scaled time for dif
ferent values of the pump input photon number. In both plots d

ferent line styles denotes different values of pump intensity:^n̂c&
581 ~dot-dot-dashed!, ^n̂c&564 ~dotted!, ^n̂c&549 ~dot-dashed!,

^n̂c&536 ~dashed!, and^n̂c&516 ~solid!. The interaction time lead-
ing to maximum conversion rate follows the relationtopt

}^n̂c&
21/3.
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FIG. 3. Behavior of overlapO ~solid squares! and conversion rateh ~open circles! as a function of the scaled interaction time for differe
intensities of the incoming twin beam.
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ing its quantum fluctuations as well as its depletion. With
such approximation the dynamics of the input stateu0,0& is
governed by the evolution operator

Û5exp$za†b†2 z̄ab%, ~10!

where z52 ikta, t is the interaction time, andk is the
coupling constant containing the nonlinear susceptibil
The evolution governed by Eq.~10! can be easily compute
by means of the Baker-Haussdorff-Campbell formula for
su(1,1) Lie algebra@18,21,22# and the output is represente
by the twin-beam state

ux&5A12uxu2(
n50

`

xnun,n&, ~11!

where

x52 i tanh~ktuau!eifa. ~12!

In order to check the theoretical results predicted by
parametric approximation we consider the overlap

O5A^xu%̂8ux&

between the state%̂8 coming from the exact evolution an
the expected twin beamux&. In Fig. 2~a! we show the behav
ior of the overlap as a function of the scaled interaction ti
t5kt for different values of the pump input power. In ord
to evaluate the efficiency of the process we also consider
energy conversion rateh, which is defined as
.

e

e

e

he

h5
1

2

Tr@%̂8 ~ n̂a1n̂b!#

Tr@%̂ inn̂c#
, ~13!

where%̂ in5uc0&^c0u. In Eq. ~13! h runs between zero an
one, the factor 1/2 coming from frequency conversion.
Fig. 2~b! we show the behavior ofh as a function of the
scaled interaction timet for different values of the input
power, as in Fig. 2~a!. It is apparent that the parametric a
proximation is valid also for moderate input power and th
one has a considerably wide range of values of the inte
tion time leading to an overlap very close to unity; th
weaker the pump, the larger this range. On the other ha
these values of the interaction time correspond to a low c
version rate. In addition, we note that the interaction tim
leading to the maximum conversion rate follows the relat
topt}^n̂c&

21/3.

III. TWIN-BEAM UP-CONVERSION

In this section we analyze the second step of the P
generation setup reported in Fig. 1, namely, the three-w
interaction starting from the twin-beam input state

ux&5A12uxu2(
n50

`

xn un,n,0&. ~14!

The complex amplitudex is confined in the unit circle and
the mean photon number pertaining to the state~14! is given
by
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57 4897GENERATION OF PHASE-COHERENT STATES
^xun̂a1n̂b1n̂cux&52uxu2/~12uxu2!.

The synthesis of the PCS~2! starting from ux& would be
easily achieved by having at our disposal a device that
forms the photon number recombination

un,n,0&→u0,0,n&.

Such a transformation has been analyzed in Ref.@18# and has
been shown to correspond to the interaction Hamiltonian

Ĥr5a†b†~b†b11!2 1/2c1c†~b†b11!2 1/2ab. ~15!

Unfortunately, the Hamiltonian~15! cannot be realized by
known optical devices. However, one may notice that
perfect number recombinationu1,1,0&→u0,0,1& is performed
by the Hamiltonian~1!, which suggests that one should su
stitute the intensity-dependent factor in Eq.~15! by its ex-
pectation value. In spite of this rather crude approximati
the trilinear interaction~1! has been shown@19,20# to pro-
vide a good approximation of the photon recombination
the case of a single photon number state at the input. H
we analyze the case of the input twin-beam state~14!. Our
aim is to demonstrate that the scheme of Fig. 1 is ind
effective in synthesizing a PCS. As a parameter to evalu
the effectiveness of PCS synthesis we use the ove

O5A^lu%̂outul& between the state

%̂out5 Trab@exp~2 i tĤ !ux&^xuexp~ i tĤ !#, ~16!

exiting thex (2) crystal in the modec and a theoretical PCS
ul& corresponding to the same mean photon number. In o
to evaluate the efficiency of the process we also consider
conversion rateh, defined as

h52
Tr~ %̂outn̂c!

^xu~ n̂a1n̂b!ux&
. ~17!

In Fig. 3 we show the behavior of the overlapO and the
conversion rateh as a function of the scaled interaction tim

FIG. 4. Optimized overlap along with the corresponding int
action time and conversion rate as a function of the twin-beam in
photons.
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for different intensity of the incoming twin beam. A remark
able fact is apparent: Interaction times corresponding t
high conversion rate also optimize the overlap between
outgoing state and the theoretical PCS. This means tha
up-conversion, although only approximated, produces a
combination process that is at the same time efficient
quite precise. One should also mention that for the sa
interaction times one has a small degree of mixing, indic
ing that the outgoing states are quite pure, and minim
reciprocal peak likelihood, thus confirming good phas
coherence properties.

In Fig. 4 we show the maximum overlap, along with th
corresponding interaction time and conversion rate, a
function of the twin-beam input energyNin5^n̂a1n̂b&. The
overlapO slowly decreases with respect to the input ene
Nin , whereas the conversion rateh is almost independent o
this quantity, saturating to a value close to 80%. This res
in a reliable generation of PCSs with overlap between 8
and 100%, for outgoing states with energyNout5^n̂c& up to
Nout520 mean photon number. The corresponding recip
cal peak likelihooddf shows the scalingdf}Nout

23/4, which,
though worse than the ideal PCS performancesdf}Nout

21 , is
far superior to the coherent-state leveldf}Nout

21/2.
The interaction timetopt , which corresponds to the max

mum overlap, decreases with the input energyNin . By a best
fit to the data in Fig. 4 we obtained the scaling power la
topt.1.4Nin

20.45. Remarkably, the same scaling is observ
as a function of the output energyNout , with only a slight
change in the proportionality constanttopt.0.9Nout

20.45.

IV. CONCLUSION

In this paper we have suggested a scheme to generat
phase-coherent states introduced in Ref.@10#. The setup in-
volves twox (2) nonlinear crystals and is based on parame
amplification of the vacuum followed by up-conversion
the resulting twin beam, the up-conversion playing the r
of an approximate photon number recombination.

We found that parametric approximation in dow
conversion of the vacuum state is valid also for moder
input power and that one has a considerably wide range
values of the interaction time leading to an overlap ve
close to unity, the weaker the pump, the larger this ran
However, these values of the interaction time correspond
low conversion rate. On the other hand, we found that
up-conversion process involved in the second step of
scheme is both power efficient and quite precise in the g
eration of PCSs. It is a remarkable fact that the range
interaction times leading to a high conversion rate also o
mizes the overlap between the outgoing state and the t
retical PCSs. We have explored the case of twin-beam in
photon number ranging from 0 to 54 and we have obser
a conversion rate about 80%, with an overlap with ide
PCSs between 80% and 100%. This corresponds to a
able generation of PCSs up toNout520 photons at the out
put.
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