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Loss-error compensation in quantum-state measurements
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In the two papers@T. Kiss, U. Herzog, and U. Leonhardt, Phys. Rev. A52, 2433~1995!; U. Herzog, Phys.
Rev. A 53, 1245~1996!# with titles similar to the one given above, the authors assert that in some cases it is
possible to compensate a quantum efficiencyh<1/2 in quantum-state measurements, violating the lower
bound 1/2 proved in a preceding paper@G. M. D’Ariano, U. Leonhardt, and H. Paul, Phys. Rev. A52, R1801
~1995!#. Here we reestablish the bound for homodyning any quantum state, and show how the proposed
loss-compensation method would fail in a real measurement outside theh.1/2 regime.
@S1050-2947~98!05904-6#

PACS number~s!: 03.65.Bz, 42.50.Dv
he
x
t

on
rix
-

r
re
s
d
e
pe
p
e

re

s
on
ex
it
-

f-
um
un

y

os
ig

t
ts
is

o a

s of

nt
ured
ion

is

tion

tate
nt
In Ref. @1# the homodyne tomography method—so far t
only experimental scheme to measure the density matri
the quantum state of radiation—was shown to be robus
the smearing effect of nonunit quantum efficiencyh at de-
tectors. It was proved that the measurement is possible
above a lower bound forh that depends on the chosen mat
representation of the state%̂. In particular, for the Fock ba
sis, such a bound ish51/2, and in the same Ref.@1# a
reconstruction algorithm that depends parametrically onh
was provided. As noticed in Ref.@2#, the existence of a lowe
bound for quantum efficiency in state measurements is a
evant issue for the foundations of quantum mechanics, a
prevents the measurement of the wave function of an in
vidual quantum system through a series of repeated w
measurements. Therefore, if a scheme for loss-error com
sation is devised, then, in principle, such a scheme can o
the door to prove an inconsistency within the logical fram
work of quantum mechanics.

In Ref. @3# it was proposed to perform the state measu
ment by using the same algorithm of Ref.@1# for h51, and
treating the effect of a low quantum efficiency as a los
evolution of radiation, thus separating the ‘‘bare’’ detecti
with h51 from the loss-compensation procedure. More
plicitly, the idea is to regard any state measurement w
h,1 on the ‘‘signal’’ state%̂sig as the corresponding hypo
thetical bare measurement withh51 on a ‘‘dressed’’
damped state%̂meas. Also, stated in different words, the e
fect of nonunit quantum efficiency is referred to the quant
state itself rather than to the detector, regarding non
quantum efficiency in a Schro¨dinger-like picture, with the
state evolving from%̂sig to %̂meas, and the quantum efficienc
playing the role of a time parametert52 lnh. The core of
the method is the inversion of the generalized Bernoulli l
transformation, which relates the matrix elements of the s
nal state%̂sig with those of the dressed state%̂measin the Fock
basis. This is given by
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^nu%̂sigun1d&5
h2 1/2~2n1d!

An! ~n1d!!
(
j 50

` A~n1 j !! ~n1d1 j !!

j !

3~12h21! j^n1 j u%̂measun1d1 j &. ~1!

The argument of Ref.@3# states that above the boundh51/2
the convergence of series~1! is guaranteed for any state, bu
the convergence radius forh depends on the matrix elemen
of %̂meas, and, in principle, for some particular states it
possible for the series to converge also forh<1/2. Thus, for
example, for a thermal state withn̄ photons, the matrix ele-
ments of%̂measdecay as@ n̄/(n̄11)# j versus the summation
index j , and one concludes that the series~1! converges for
h.(211/n̄)21, which violates the boundh51/2. In this
Comment we show that this argument does not apply t
measurement, because in this case the series~1! must be
evaluated with coefficients given by the measured value
the matrix elements of%̂meas in place of their expectation
valueŝ nu%̂measum&. In order to have a successful experime
based onN repeated measurements, the series with meas
coefficients must converge for increasingly large truncat
index to a result within an error that vanishes for largeN.
For statistically uncorrelated coefficientscj the variance of
the ~unconditionally! convergent series( j 50

` zjcj is given by
the series of variances( j 50

` z2 j^Dcj
2&, where z512h21.

Then, ana priori estimation of the measurement error
given by e5A( j 50

` z2 je j
2, with e j5A^Dcj

2&/N. Now, it is
clear that statistical errors depend on the particular detec
scheme used to measurecj}^n1 j u%̂measun1d1 j &. For di-
rect photodetection—which, however, is not a quantum-s
measurement—the errore j associated to a diagonal eleme
pj5^n1 j u%̂measun1 j & is e j.A(12pj )pj /N, and e j

2 van-
ishes linearly withpj itself for j→`. This is the logical
basis of the argument of Refs.@3,4# ~which we are comment-
3131 © 1998 The American Physical Society
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3132 57COMMENTS
ing on! @5#, where, however, the effects of statistical errors
homodyne tomography were not considered. Actually, wh
the density matrix elements are measured by homodyne
mography, the statistical errore j does not vanish as the re
spective matrix elementpj5^n1 j u%̂measun1d1 j & ~for fixed
n andd), but ‘‘saturates’’ to the valueA2/N, independently
of d, n, and %̂meas@6,7#. Therefore, the above argument n
longer holds, and the convergence radius equals the lo
boundh51/2. Thus forh<1/2 the loss-compensation pro
cedure is meaningless for any state, even though the s
~1! converges analytically, as for the case of the therm
states considered before. The same is also true for the
ated analytical continuation procedure given by Eq.~14! of
Ref. @4#. Here, one has a number of infinite series that
volve matrix elements of the bare state with shifted indic
However, in an actual measurement, a truncation value
each series must be given, and this is determined by
largest index of the measured density matrix. With such tr
cation one can reorder terms in the series and prove
easily that Eq.~14! of Ref. @4# and Eq.~1! are exactly the
same. For this reason, in the following we will always re
only to the loss-error compensation procedure~1! of Ref. @3#.

We illustrate the effect of experimental errors in the lo
compensation procedure by means of Monte Carlo simula
experiments of homodyne tomography with%̂sig as a thermal
state withn̄52. According to Refs.@3,4# this state should be
accessible forh.2/5, hence outside the allowed regio
h.1/2.

In Fig. 1 we report the matrix element^2u%sigu2& evalu-
ated as the truncated series~1! with homodyne detected ma
trix elementŝ j 12u%measu j 12& versus the truncation inde
j M of the series, and for different values ofh. One can see
that for h well above the boundh51/2 (h50.6 and
h50.55) the series converges versusj M to the correct theo-
retical value, whereas forh approaching the bound the siz
of the error bar increases dramatically, with the sum dep
ing more and more from the theoretical value. Forh51/2 or

FIG. 1. Matrix element̂ 2u%̂sigu2& for a thermal state with two
photons evaluated as the truncated series~1! with homodyne de-
tected matrix elementŝj 12u%measu j 12& versus the truncation in
dex j M . The squares correspond toh50.6, the circles toh50.55,
the triangles toh50.53. All points are obtained with Monte Carl
experiments using 24 000 homodyne data.
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below, the result is out of the scale of the figure and os
lates unboundedly versusj M . In Fig. 2 the statistical error
for the same matrix element is studied versus the quan
efficiencyh for different values of the truncation indexj M :
it is apparent that the error converges for all valuesh.1/2.
When the boundh51/2 is approached, the error starts gro
ing as a function of the truncation indexj M , and diverges for
all valuesh<1/2 ~the finite slope versush is only due to the
finiteness ofj M). As we can see from the figure,h51/2 is
manifestly a ‘‘transition value’’ from convergent to diver
gent behavior of the statistical error.

Actually, in a real experiment homodyne data are co
taminated by additional sources of noise other than quan
efficiency. However, for tomography some kinds of noi
can still be treated as a negative contribution to the ove
quantum efficiency@8#.

Before concluding, we want to stress that to our know
edge there is no method—alternative to homody
tomography—that has statistical errors which make the
ries ~1! convergent forh,1/2. For all methods recently pro
posed by several authors@9–11#, an analysis of statistica
errors is still lacking. Moreover, in the set of papers@9# the
radiation is measured indirectly through measurements
atoms that interacted with it, and in such circumstance
quantum noise or loss of the apparatus cannot be descr
just in terms of an overall quantum efficiency.

In conclusion, we have shown that the loss-compensa
procedures proposed in Refs.@3,4# cannot be used to mea
sure the quantum state through homodyne tomography be
the boundh51/2 proved in Ref.@1#. These procedures ar
still valid for h,1/2 when the diagonal matrix elements a
measured by direct detection.

C.M. acknowledges support from the European Un
TMR Programme. This work was supported in part by TM
Research Network Grant No. ERP-4061PL95-1412.

FIG. 2. Statistical error corresponding to the same matrix e
ment and the same state as in Fig. 1, evaluated as the trun
series~1!, as a function ofh for different values of the truncation
index j M . The triangles correspond toj M510, the crosses to
j M520, and the stars toj M5100. All points are obtained with
Monte Carlo experiments using 8000 homodyne data.
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