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We consider the ideal situation in which a space rotation is transferred from a quantum spin j to
a quantum spin l "= j. Quantum-information theoretical considerations lead to the conclusion that such
operation is possible only for l ! j. For l > j the optimal stretching transformation is derived. We show
that for qubits the present no-stretching theorem is equivalent to the usual no-cloning theorem.
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“No-go” theorems [1] play a crucial role in Quantum Informa-
tion Theory [2] and for foundations of Quantum Mechanics [3].
Among the no-go theorems, the celebrated no-cloning [4–8]1 is
considered the starting point of the field of Quantum Informa-
tion itself, lying at the basis of security of quantum cryptogra-
phy. Other relevant no-go theorems are the no-programming the-
orems [2,9–11], and the no-universal-NOT [12,13]. The no-cloning
theorem states the impossibility of building a machine that pro-
duces perfect clones of the same unknown quantum state. The
no-programming theorems state the impossibility of building a
machine that can perform any desired quantum operation or
POVM (positive-operator-valued measure) which is programmed in
a quantum register inside the machine. Finally, the no-universal-
NOT states the impossibility of building a device that reverses a
qubit in any unknown quantum state.

The proofs of the no-cloning and no-programming theorems
have a common feature: in both cases the pertaining ideal trans-
formation should map pure states to pure states, i.e. it does not
entangle the system with the machine. Therefore, if one supposes
that the transformation is described by a unitary evolution U , as
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dictated by Quantum Mechanics, the input quantum state ψ is
transformed to ψ ′ as follows

U |ψ〉|η〉 =| ψ ′〉
∣∣η′(ψ)

〉
, (1)

with an auxiliary system (which can be part of the machine, but
may also include the environment) prepared in a reset state η and
ending up in a state η′(ψ) generally depending on ψ . The argu-
ment of the impossibility proof is then to derive a contradiction
by considering the scalar product between different states at the
input and at the output [6]2

〈φ|ψ〉 =〈 φ′|ψ ′〉
〈
η′(φ)

∣∣η′(ψ)
〉
, (2)

and for |〈φ′|ψ ′〉| < |〈φ|ψ〉|, since |〈η′(φ)|η′(ψ)〉| ! 1 one has an
overall reduction of the scalar product, which contradicts the sup-
posed unitarity. In information theoretical terms a decrease of the
scalar product means an increased state-distinguishability, which
would lead to a violation of the classical data-processing theorem
by the machine regarded as an input-output communication chan-
nel.

We will now see that this situation occurs in another no-go
theorem—which we will refer to as no-stretching theorem—which

2 This is the argument of the proof of the no-cloning theorem of Ref. [6], which
is indeed more stringent than that of Ref. [4]. More precisely, in Ref. [4] it is shown
that the cloning machine violates the superposition principle, which applies to a
minimum total number of three states. In Ref. [6] it is shown that the machine
would violate unitarity, which shows that any two non-orthogonal states cannot be
cloned.
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forbids stretching a spin while keeping its unknown orientation. In other
words, it is impossible to transfer a spatial rotation from a spin j
to a larger spin l > j. For a more general transformation group the
situation is more complicated, because the labels for irreducible
representations are usually vectors rather than (half)integers, and
one must find conditions on couples of such vectors under which
transfer from one irrep to another is impossible. Increasing dimen-
sion of the space carrying the representation is not a sufficient
criterion for impossibility, as one could easily prove considering
the impossibility of covariantly transforming the representation U
for SU(d) to its complex conjugate U∗ , which is carried by a space
with the same dimension d [14]. As we will see in the following, it
is not just the angular momentum conservation that matters, since
the transfer of rotation is possible when the spin is decreased to
l < j.

Let us consider a spin j prepared in the coherent state for the
angular momentum U ( j)

g | j, j〉 with g a generic unknown element
of the group SU(2). The state | j, j〉 is chosen, with the angular
momentum pointing toward the north pole—however, any other
initial direction would be equivalent. The task is now to transfer
the spatial rotation from the spin j to a different spin l "= j, namely
to get the state U (l)

g |l, l〉. If such transfer were physically feasible
there would exist a unitary transformation W such that

W
(
U ( j)

g | j, j〉 ⊗ |E〉
)
= U (l)

g |l, l〉 ⊗
∣∣θ(g)

〉
, (3)

where |E〉 is the reset state of the spin-stretching machine, and
|θ(g)〉 is a machine state depending on g . [Notice that these states
belong to spaces of different dimensions, since j "= l. For example
one could take |E〉 =| l, l〉⊗ |ω〉, |ω〉 the reset state of an additional
ancilla, and then transfer the unitary rotation Ug from the spin j
to the spin l.] By taking the scalar product between vectors rotated
with a different g , one has

〈 j, j|U ( j)†
h U ( j)

g | j, j〉 =
〈
θ(h)

∣∣θ(g)
〉
〈l, l|U (l)†

h U (l)
g |l, l〉. (4)

The matrix element of the transformation is just a function of the
second Euler angle β of the rotation h−1g (see Ref. [15])

〈x, x|U (x)†
h U (x)

g |x, x〉 =
(
cos

β

2

)2x

, x = j, l, (5)

whence it is a decreasing function of x, since 0 < | cos β
2 | < 1

(for non-parallel and non-orthogonal states, i.e. β "= kπ , k inte-
ger). Then, in order to preserve the overall scalar product, for j < l
we must have |〈θ(h)|θ(g)〉| > 1, which is impossible, whereas for
decreasing spin j > l we must have |〈θ(h)|θ(g)〉| < 1, which is al-
lowed by quantum mechanics.

We call the above no-go theorem no-stretching, since it forbids
to transfer a spatial rotation to a larger spin. In physical terms, as
can be intuitively understood by figuring a spin as a vector, this
theorem forbids to amplify a signal corresponding to a spatial ro-
tation by enlarging the vector which is rotated, whereas it is in
principle possible to shorten the vector (as shown in detail in the
following), attenuating the signal (see Fig. 1).

If we cannot stretch the spin by keeping the same unknown
orientation, we can anyway try to do our best to keep the ori-
entation by blurring the state of the spin toward a mixed one.
What is then the optimal physical stretching map, which transfers
the rotation g from a spin j to a spin l "= j optimally, e.g. with the
maximum state-fidelity? For j < l such fidelity must be certainly
smaller than one, whereas for j > l we expect that it can be unit.
In technical terms, in order to be physically achievable the optimal
map must be: (1) completely positive (CP)—namely it must pre-
serve positivity also when applied locally on the system entangled
with an ancilla; (2) trace-preserving; (3) rotation-covariant, corre-
sponding to the request that the map transfers the spin rotation.
Mathematically, upon denoting the map as ρl = M (ρ j) acting on

Fig. 1. The no-cloning theorem of Quantum Mechanics is actually a special case of
no-stretching theorem, which asserts that unitary transformations cannot be “am-
plified” to unitaries carrying more information about the parameter of the group
element, making two non-orthogonal states more “distinguishable”. For example,
there is no machine that takes a rotated eigenstate of the z-component of the an-
gular momentum and produces an output larger angular momentum rotated in the
same way. In the figure we pictorially represent the no stretching theorem. While
it is possible to output a rotation exactly from a spin j to a shorter spin l < j (fig-
ure on the left), the same operation cannot be achieved exactly when the second
spin is larger l > j (figure on the right). In the latter case the direction is blurred in
form of a mixing of the output state.

a state ρ j of the spin j and resulting in a state ρl of the spin l, the
covariance of the map is translated to the identity

M
(
U ( j)

g ρ jU
( j)†
g

)
= U (l)

g M (ρ j)U
(l)†
g . (6)

The CP condition is equivalent to the possibility of writing the map
in the Kraus form [16]

M (ρ) =
∑

k

MkρM†
k, (7)

where Mk are linear operators from the input Hilbert space Hin
to the output Hilbert space Hout. The trace-preserving condition
corresponds to the constraint

∑
k M

†
kMk = I . Optimality is defined

in terms of maximization of the input-output fidelity

F := 〈l, l|M
(
| j, j〉〈 j, j|

)
|l, l〉. (8)

The following Kraus operators Mk give the optimal map M

Mk = s jl
∑

m∈Ik

|l,m + k〉〈 j,m|
〈
| j − l|,k; j,−m, l,m + k

〉

= s jl
∑

m∈ Jk

|l,m〉〈 j,m − k|
〈
| j − l|,k; j,−m + k, l,m

〉
, (9)

where Ik = [− j, j] ∩ [−l−k, l−k], Jk = [−l, l] ∩ [− j+k, j+k], and

s jl =
√

2 j + 1
2| j − l| + 1

(10)

with −| j − l| ! k ! | j − l|, and 〈 J ,M; j,m, l,n〉 denotes the
Clebsch–Gordan coefficient [15] for the coupling between the two
spins j and l into their sum J . The Clebsch–Gordan coefficients
in Eq. (9) guarantee both trace preservation and covariance. The
above map has been obtained by standard optimization tech-
niques based on convex analysis. In particular, we used the Choi–
Jamiolkowski representation [17,18] for CP maps, which exploits
the following one-to-one correspondence between CP maps M
from Hin to Hout and positive operators RM on Hout ⊗ Hin

RM = M ⊗ I
(
|Ω〉〈Ω|

)
,

M (ρ) = Trin
[(
IHout ⊗ ρT )

RM
]
, (11)

where |Ω〉 := ∑d
j=1 |ψ j〉|ψ j〉 is a maximally entangled state, with

d := dim(Hin), the symbol Trin/out denotes the partial trace on the
Hilbert space Hin (Hin, respectively), and ρT is the transpose of
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Fig. 2. Fidelity of the optimal spin-stretching map for j = 10 as a function of l.

the state ρ on the orthonormal basis {|ψ j〉}. Trace preservation
is guaranteed by the condition Trout[RM ] = IHin . The covariance
property Eq. (6) translates to the following commutation property
for RM [19]
[(
U (l)

g ⊗ U ( j)∗
g

)
, RM

]
= 0, ∀g ∈ SU(2). (12)

Now, it is easy to verify that trace preservation, CP and covariance
properties are all preserved under convex combination of differ-
ent maps, which by linearity of Eq. (11) corresponds to convex
combination of Choi–Jamiolkowski operators. Since the fidelity (8)
is linear versus M and the set of covariant CP trace-preserving
maps is convex, the optimal map is an extremal point of such set,
namely it cannot be written as a convex combination of any cou-
ple of different maps. Our analysis consists in classifying extremal
points of the set of covariant maps and then looking for the opti-
mal one.

The derivation of the optimizal map is quite technical, however,
it is easy to check optimality. Consider the case j > l. Then we
have | j − l| = j − l. Applying the map to the state | j, j〉 and us-
ing elementary properties of the Clebsch–Gordan coefficients we
obtain

M
(
| j, j〉〈 j, j|

)
= |l, l〉〈l, l|. (13)

This proves that the ideal map is exactly achievable for j > l. On
the other hand, for j < l we have | j − l| = l − j, and the output of
the map applied to | j, j〉 in this case is

M
(
| j, j〉〈 j, j|

)

= 2 j + 1
2l + 1

l− j∑

k= j−l

(2l − 2 j)!(l + j + k)!
(2l)!(l − j + k)! |l,k + j〉〈l,k + j|. (14)

The fidelity is easily evaluated as

F = 2 j + 1
2l + 1

, (15)

with plot given in Fig. 2.
The optimality of the fidelity (15) can be proved as follows. The

optimal measurement of the spin direction is described by the co-
variant POVM obtained in Ref. [20]

P ( j)
g dg = (2 j + 1)dg U ( j)

g | j, j〉〈 j, j|U ( j)†
g , (16)

with group integrals normalized as
∫

SU(2) dg = 1. This is the POVM
that maximizes the likelihood

L := 〈 j, j|P ( j)
e | j, j〉, (17)

of the covariant estimation of SU(2) elements on the vector | j, j〉
[20], and the maximum likelihood is 2 j + 1. Notice that the POVM
in Eq. (16) minimizes all cost functions in the generalized Holevo
class [21]. We now evolve this POVM with our map M with Kraus
operators given in Eq. (9). This corresponds to apply the dual map
M ∗ in the reverse order, i.e. from spin l to j, corresponding to

the Heisenberg picture (in which we evolve operators instead of
states). We thus obtain

M ∗(P (l)
g

)
= (2l + 1)U ( j)

g M ∗(|l, l〉〈l, l|
)
U ( j)†

g . (18)

The likelihood of such POVM is

L = (2l + 1)〈 j, j|M ∗(|l, l〉〈l, l|
)
| j, j〉

= (2l + 1)〈l, l|M
(
| j, j〉〈 j, j|

)
|l, l〉

= (2l + 1)F ! 2 j + 1, (19)

and the optimal map saturates this bound.
By using the same POVM we can prove that the optimal map

preserves the classical information about the spatial rotation. In
order to prove this statement, let us consider the Kraus operatos
in Eq. (9). Using the identity for the Clebsch–Gordan coefficients
〈
| j − l|,k; j,−m, l,m + k

〉
=

〈
| j − l|,−k; l,−m − k, j,m

〉
, (20)

and renaming n = m + k, the Kraus operators of the dual map
M ∗ = ∑

k M
†
k · Mk can be rewritten as follows

M†
k = s jl

∑

m∈Ik

| j,m〉〈l,k +m|
〈
| j − l|,k; j,−m, l,k +m

〉

= s jl
∑

n∈ Jk

| j,n − k〉〈l,n|
〈
| j − l|,k; j,k − n, l,n

〉

= s jl
∑

n∈ Jk

| j,n − k〉〈l,n|
〈
| j − l|,−k; l,−n, j,−k + n

〉
. (21)

Considering that slj =
√

2l+1
2 j+1 s jl , it is now immediate to notice that

the dual map M ∗ for the case l > j coincides with the direct map
for input spin l and output j, apart from a multiplicative constant
2 j+1
2l+1 , since the Kraus operator M†

k of M ∗ coincides with the Kraus
operator M−k of M from l to j. Then,

(2l + 1)M ∗(|l, l〉〈l, l|
)
= (2 j + 1)| j, j〉〈 j, j|. (22)

This implies that the conditional probability distribution

p(g|h) = Tr
[
P (l)
g M

(
U ( j)

h | j, j〉〈 j, j|U ( j)†
h

)]
, (23)

for the outcomes of the measurement described by the POVM P (l)
g

at the output of the optimal stretching channel is exactly the same
as that of P ( j)

g at the input

q(g|h) = Tr
[
P ( j)
g U ( j)

h | j, j〉〈 j, j|U ( j)†
h

]
. (24)

Since the mutual information of the two random variables g,h is a
functional of the conditional probability, p(g|h) = q(g|h), this im-
plies that the mutual information obtained by the POVM P ( j)

g at
the input is preserved at the output. Therefore, the optimal spin-
stretching map preserves the mutual information.

For qubits the no-cloning theorem is equivalent to the no-
stretching theorem. Indeed, perfect cloning from m to n >m copies
is equivalent to stretching the total angular momentum from
j = m

2 to l = n
2 . Moreover, the optimal fidelity for m → n cloning

is given by [22]

F = m + 1
n + 1

, (25)

which coincides with Eq. (15). Clearly, no-cloning for qubits im-
plies no-cloning for qudits. For qutrits or generally larger dimen-
sion d > 2, what the no-stretching theorems forbid is to transfer
a group transformation covariantly to a system carrying more in-
formation about such transformation. However, this condition is
harder to state in precise mathematical terms involving parame-
ters of irreducible input and output representations.
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In conclusion, we have seen that it is forbidden to stretch a
spin while keeping its unknown orientation, a new no-go theorem
which we call no-stretching theorem. We have seen that this is not
due to conservation laws, since the transformation in the oppo-
site direction—i.e. decreasing the angular momentum—is possible
perfectly (this is non-obvious). The no-cloning theorem is a special
case of the no-stretching theorem, and for qubits the optimal spin-
stretching j → l transformation coincides with the optimal cloning
from m = 2 j to n = 2l copies.
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