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Abstract – We introduce the concept of quantum supermap, describing the most general
transformation that maps an input quantum operation into an output quantum operation. Since
quantum operations include as special cases quantum states, effects, and measurements, quantum
supermaps describe all possible transformations between elementary quantum objects (quantum
systems as well as quantum devices). After giving the axiomatic definition of supermap, we
prove a realization theorem, which shows that any supermap can be physically implemented
as a simple quantum circuit. Applications to quantum programming, cloning, discrimination,
estimation, information-disturbance trade-off, and tomography of channels are outlined.
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The input-output description of any quantum device is
provided by the quantum operation of Kraus [1], which
yields the most general probabilistic evolution of a quan-
tum state. Precisely, the output state ρout is given by the
quantum operation E applied to the input state ρin as
follows:

ρout =
E (ρin)
Tr [E (ρin)]

, p(E|ρin) := Tr [E (ρin)] , (1)

where p(E|ρin) is the probability of E occurring on state
ρin, when E is one of a set of alternative transformations,
such as in a quantum measurement. Owing to its physical
meaning, a quantum operation E must be a linear, trace
non-increasing, completely positive (CP) map (see, e.g.
[2]). The most general form of such a map is known as
Kraus form

E(ρ) =
∑

j

EjρE
†
j , (2)

where the operators Ej satisfy the bound
∑
j E
†
jEj ! I so

that 0! p(E|ρin)≡Tr[
∑
j E
†
jEjρin]! 1. Trace-preserving

maps, i.e. those achieving the bound, are a particular kind
of quantum operations: they occur deterministically and
are referred to as quantum channels.
In general it is convenient to consider two different input

and output Hilbert spaces Hin and Hout, respectively. In
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this way, the concept of quantum operation can be used
to treat also quantum states, effects, and measurements,
which describe the properties of elementary quantum
objects such as quantum systems and measuring devices.
Indeed, states can be described as quantum operations
with one-dimensional Hin, i.e. with Kraus operators Ej
given by ket-vectors

√
pj |ψj〉 ∈Hout, thus yielding the

output state ρout = E(1) =
∑
j pj |ψj〉〈ψj |. A quantum

effect 0! P ! I [3] corresponds instead to a quantum
operation with one-dimensional Hout, i.e. with Kraus
operators given by bra-vectors Ei = 〈vi|, yielding the
probability p(E|ρin)≡ E(ρin) =

∑
i〈vi|ρin|vi〉=Tr[Pρin]

with P =
∑
i |vi〉〈vi|. More generally, any quantum

measurement can be viewed as a particular quantum
operation, namely as a quantum-to-classical channel [4].
Channels, states, effects, and measurements are all

special cases of quantum operations. What about then
considering maps between quantum operations them-
selves? They would describe the most general kind of
transformations between elementary quantum objects. For
example a programmable channel [5] would be a map of
this type, with a quantum state at the input and a channel
at the output. Or else, a device that optimally clones a set
of unknown unitary gates would be a map from channels
to channels. We will call such a general class of quantum
maps quantum supermaps, as they transform CP maps
(sometimes referred to as superoperators) into CP maps.
In this paper we develop the basic tools to deal with

quantum supermaps. The concept of quantum supermap
is first introduced axiomatically, by fixing the minimal

30004-p1



G. Chiribella et al.

requirements that a map between quantum operations
must fulfill. We then prove a realization theorem that
provides any supermap with a physical implementation
in terms of a simple quantum circuit with two open ports
in which the input operation E can be plugged. This result
allows one to simplify the description of complex quantum
circuits and to prove general theorems in quantum infor-
mation theory. Moreover, the generality of the concept of
supermap makes it fit for application in many different
contexts, among which quantum programming, calibra-
tion, cloning, and estimation of devices.
To start with, we define the deterministic supermaps as

those sending channels to channels. Conversely, a prob-
abilistic supermap will send channels to arbitrary
trace-non-increasing quantum operations. The mini-
mal requirements that a deterministic supermap S̃ must
satisfy in order to be physical are the following: it must be
i) linear and ii) completely positive. Linearity is required
to be consistent with the probabilistic interpretation.
Indeed, if the input is a random choice of quantum
operations E =

∑
i piEi, the output must be given by

the same random choice of the transformed operations
S̃(E) =

∑
i piS̃(Ei), and, if the input is the quantum opera-

tion E with probability p, the output must be the S̃(E) with
probability p, implying S̃(pE) = pS̃(E). Clearly, these two
conditions imply that S̃ is a linear map on the linear space
generated by quantum operations. Complete positivity
is needed to ensure that the output of S̃ is a legitimate
quantum operation even when S̃ is applied locally to a
bipartite joint quantum operation, i.e. a quantum oper-
ation E with bipartite input space Hin =Hin,A⊗Hin,B
and bipartite output space Hout =Hout,A⊗Hout,B . If
S̃ is a supermap transforming quantum operations with
input (output) space Hin,A (Hout,A), complete positivity
corresponds to require that S̃⊗ IB(E) is a CP map for any
bipartite quantum operation E , IB denoting the identity
supermap on the spaces labeled by B.
In order to deal with complete positivity it is convenient

to use the Choi representation [6] of a CP map E in terms
of the positive operator E on Hout⊗Hin

E := E ⊗I(|I〉〈I|), (3)

where |I〉 is the maximally entangled vector
|I〉=

∑
n |n〉|n〉 ∈H

⊗2
in , {|n〉} an orthonormal basis,

and I is the identity operation. The correspondence
E↔E is one-to-one, the inverse relation of eq. (3) being

E(ρ) := TrHin [(I ⊗ ρT)E], (4)

where T denotes transposition in the basis {|n〉}. In terms
of the Choi operator, the probability of occurrence of E
is given by p(E|ρin) =Tr[ρinTP ], where P is the effect
P := TrHout [E]. To have unit probability on any state, a
quantum channel must have P = I, i.e. its Choi operator
must satisfy the normalization

TrHout [E] = IHin . (5)

A supermap S̃ maps quantum operations into quantum
operations as E ′ = S̃(E). In the Choi representation, the
supermap S̃ induces a linear map S on Choi operators,
as E′ = S(E). Using eq. (4), we can get back S̃ from S as
follows:

E ′(ρ) = S̃(E)(ρ) = TrKout [(I ⊗ ρT)S(E)]. (6)

Of course complete positivity of E ′ implies that the map
S is positive. On the other hand, it is easily seen that the
bipartite structure of a joint operation E over a composite
system induces a bipartite structure of the Choi operator
E. The local application of the supermap S̃ —given by
S̃⊗ I(E)— then corresponds to the local application of S
—given by S⊗ I(E)— whence S̃ is CP, if and only if S is
CP.
Since the correspondence S̃↔ S is one-to-one, in the

following we will focus our attention on S. The supermap
S sends positive operators E on Hout⊗Hin to posi-
tive operators S(E) on generally different Hilbert spaces
Kout⊗Kin. Complete positivity of S is equivalent to the
existence of a Kraus form

S(E) =
∑

i

SiES
†
i , (7)

where {Si} are operators from Hout⊗Hin to Kout⊗Kin.
The following Lemmas provide the characterization of

deterministic supermaps:

Lemma 1. Any linear operator C on Hout⊗Hin such
that Tr[CE] = 1 for all Choi operators E of channels has
the form C = I ⊗ ρ, with ρ on Hin satisfying Tr[ρ] = 1.
For C ! 0 one has ρ! 0.

Proof. Consider a Choi operator E with effect
TrHout [E] = P " I. Upon defining D := σ⊗ (I −P )
for some state σ on Hout, we have that E+D is the Choi
operator of a channel, normalized as in eq. (5). Since by
hypothesis Tr[C(E+D)] = 1, we have that

Tr[CE] = 1−Tr[CD] = 1−Tr[C(σ⊗ I)]+Tr[C(σ⊗P )]
= Tr[C(σ⊗P )], (8)

since σ⊗ I is the Choi operator of a channel. Therefore,

Tr[CE] = Tr[C(σ⊗P )] = Tr[PTrHout [C(σ⊗ I)]]
= Tr[TrHout [E]TrHout [C(σ⊗ I)]]
= Tr[ρP ], (9)

where ρ := TrHout [C(σ⊗ I)]. Since ρ does not depend on
E, the last equality can be rewritten as Tr[CE] = Tr[(I ⊗
ρ)E] for all positive E, whence C = I ⊗ ρ, and in order to
have Tr[CE] = 1 for all E, we must have Tr[ρ] = 1. Clearly
C ! 0 implies ρ! 0. #

Lemma 2. The supermap S is deterministic iff there exists
a channel N∗ from states on Kin to states on Hin such
that, for any state ρ on Kin, one has

S∗(IKout ⊗ ρ) = IHout ⊗N∗(ρ), (10)
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where S∗ is the dual map of S defined in terms of the
Kraus form in eq. (7) by

S∗(O) :=
∑

i

S†iOSi. (11)

Proof. One has Tr[CS(E)] = Tr[S∗(C)E]. Consider a posi-
tive operator C = I ⊗ ρ on Kout⊗Kin, where ρ is a state
on Kin. We have that

1 =Tr[CS(E)] = Tr[S∗(C)E], (12)

for all Choi operators E of channels. According to
Lemma 7, this implies S∗(I ⊗ ρ) = I ⊗σ, where σ is a state
for any state ρ. Since the maps ρ→ I ⊗ ρ, S∗ and I ⊗σ→ σ
are all CP, we have σ=N∗(ρ), where N∗ is a CP trace
preserving map from states on Kin to states on Hin. !
Remarkably, the same mathematical structure of

Lemma 2 characterizes semi-causal quantum opera-
tions [7], i.e. operations on bipartite systems that allow
signaling from system A to system B but not viceversa.
In our case, this structure originates from the causality
of input-output relations. An equivalent condition for a
supermap to be deterministic is given by the following:

Lemma 3. The supermap S is deterministic iff there exists
an identity preserving completely positive map N such
that, for any operator E on Hout⊗Hin, one has

TrKout [S(E)] =N (TrHout [E]). (13)

Proof. This lemma follows from the previous one by
considering that

Tr[ρTrKout [S(E)]] = Tr[(I ⊗ ρ)S(E)] =
Tr[S∗(I ⊗ ρ)E] = Tr[(I ⊗N∗(ρ))E] =
Tr[(I ⊗ ρ)(I ⊗N )(E)] = Tr[ρN (TrHout [E])], (14)

for all states ρ on Kin. The map N is identity preserving
because it represents N∗ in the Schrödinger picture. !
Equation (13) shows that the effect P ′ =TrKout [S(E)]

depends only on the effect P =TrHout [E], e.g. not on
TrHin [E]. Basically, this reflects the fact that, in the
input/output bipartition of the Choi operator, the output
must not influence the transformation of the input effect.
Now we show that deterministic supermaps, so far

introduced on a purely axiomatic level, can be physically
realized with simple quantum circuits. Upon writing a
canonical Kraus form for the completely positive map N
as follows:

N (P ) =
∑

l

N†l PNl, (15)

and substituting the Kraus forms (7) and (15) into
eq. (13), one obtains

∑

n

(〈kn| ⊗ I)SiES†i (I ⊗ |kn〉) =

∑

m

(〈hm| ⊗N†j )E(Nj ⊗ |hm〉), (16)

where {|kn〉} and {|km〉} are orthonormal basis for
Kout and Hout, respectively, and identity operators
must be considered as acting on the appropriate Hilbert
spaces —Kin on the top and Hin on the bottom part of
eq. (16). Equation (16) gives two equivalent Kraus forms
for the same CP map, of which the second one is canonical
(since {Nj} is canonical and {|hm〉} are orthogonal).
Therefore, there exists an isometry W connecting the two
sets of Kraus operators as follows:

(〈kn| ⊗ I)Si =
∑

mj

Wni,mj(〈hm| ⊗N†j ), (17)

with W †W = I. Explicitly

Wni,mj := (〈kn| ⊗〈 ai|)W (|hm〉⊗ |bj〉), (18)

where {|ai〉} and {|bj〉} are orthonormal basis for two
ancillary systems with Hilbert spaces A and B. From
eq. (17) we then obtain

Si = (I ⊗〈ai|)W (I ⊗Z), (19)

where
Z =
∑

j

|bj〉⊗N†j . (20)

Using eq. (7), we can now evaluate the output Choi
operator as follows:

S(E) =TrA[W (I ⊗Z)E(I ⊗Z†)W †]. (21)

Finally, using eq. (6) we get

E ′(ρ) =TrKin [(I ⊗ ρT)S(E)] =

TrKin⊗A[(IKout⊗A⊗ ρT)W (I ⊗Z)E(I ⊗Z†)W †] =

TrA[W (E ⊗IB)(V ρV †)W †], (22)

where V =
∑
j |bj〉⊗N∗j is the partial transposed of Z (see

eq. (20)) on the second space. Since the map N is identity
preserving, V is an isometry, namely V †V = I. We have
then proved the following realization theorem:

Theorem 1. Every deterministic supermap S̃ can be real-
ized by a four-port quantum circuit where the input oper-
ation E is inserted between two isometries V and W and
a final ancilla is discarded as in fig. 1. The output opera-
tion E ′ = S̃(E) is given by

S̃(E)(ρ) = TrA[W (E ⊗IB)(V ρV †)W †]. (23)

Since any isometry can be realized as a unitary interaction
with an ancilla initialized in some reset state, the above
Theorem entails a realization of supermaps in terms of
unitary gates. However, we preferred stating it in terms of
isometries in order to avoid the arbitrariness in the choice
of the initial ancilla state.
We want now to emphasize that deterministic

supermaps with Hin =Kin do not preserve in general
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Fig. 1: Realization scheme for a supermap S̃ sending the
quantum operation E to the quantum operation E ′ = S̃(E), here
represented by the dashed-boxed circuit. The input quantum
operation E sends states in Hin to states in Hout. The output
quantum operation E ′ sends states on Kin to states on Kout.
The supermap is realized by two maps V = V ·V † and W =
W ·W

† made by isometries V and W located at the input and
at the output ports of the quantum operation E , respectively.
The two isometries are possibly connected by an identity
channel on the ancillary system with Hilbert space B. At the
output the ancilla with Hilbert space A is either measured,
each outcome post-selecting a probabilistic supermap, or simply
discarded, thus realizing a deterministic supermap.

the probabilities of occurrence of arbitrary quantum
operations: if E ′ is not a channel p(E′|ρin) can be different
from p(E ′|ρin). This is clear from fig. 1, since the input
state ρin is generally changed by the isometry V . Indeed,
one can have the extreme situation in which for every
ρin the isometry V feeds into E a fixed state on which E
occur with certainty, thus transforming the probabilistic
quantum operation E into a deterministic one E ′. For the
above reason, we will call probability preserving those
special deterministic supermaps with Hin =Kin that also
preserve occurrence probability for all states, namely
which preserve the effect P =TrHout [E]. Since the input
effect P =TrHout [E] is transformed into the output effect
P ′ =TrHout [E

′] by the map N , we may denote N as the
effect-map associated to the supermap S, as in eq. (13).
It is immediate to see that the supermap S is prob-
ability preserving if and only if its effect-map N is the
identity map.
Up to now we have considered only deterministic

supermaps. What about the probabilistic ones? By defin-
ition a probabilistic supermap S turns quantum channels
into arbitrary trace-nonincreasing quantum operations.
In this case, it is not always possible to associate an
effect-map N to S. However, a probabilistic supermap
S1 is always completed to a deterministic one by some
other supermaps S2, S3, . . ., which can occur in place
of S1, so that S1+ S2+ . . .=: S is deterministic. Each
supermap Sj is completely positive, hence it has a Kraus

form with operators {S(j)k }, and all Kraus forms together
provide a Kraus form for the deterministic supermap S.
Therefore, since according to eq. (19) each Kraus term

S(j)k is associated to an outcome of a von Neumann

measurement {P (j)k = |a
(j)
k 〉〈a

(j)
k |} over the ancilla with

Hilbert space A, any probabilistic supermap can be
realized by a quantum circuit as in fig. 1, via postselection

induced by a projective measurement {P (j) =
∑
k P

(j)
k }

over the ancilla.

Theorem 2. Every probabilistic supermap S̃ can be
realized by a four port scheme with measurement as
in fig. 1, namely

S̃(E)(ρ) = TrA[(P ⊗ I)W (E ⊗IB)(V ρV †)W †] (24)

with V and W isometries, and P orthogonal projector over
a subspace of the ancillary space A.

We want to stress the generality of the realization
Theorem 2, which can be seen as the analog for proba-
bilistic supermaps (here presented in finite dimensions) of
Ozawa’s realization theorem for quantum instruments [8].
Indeed eq. (24) describes any circuit in which an input
device can be plugged, e.g. circuits with measurements
performed in different stages, including the possibility of
conditioning transformations on measurement outcomes.
Therefore, whatever the input and the output of the
quantum circuit might be (states, channels, or measure-
ments), the following delayed reading principle will hold
at a fundamental axiomatic level:

Corollary 1 (Delayed reading principle). Every prob-
abilistic quantum circuit is equivalent to a unitary circuit
with a single orthogonal measurement at the output.

Quantum supermaps can be applied to a tensor product
of quantum operations, namely to a set of quantum
operations that are not causally connected (the output
of one map is not used as the input for another map).
Assorted input sets of states, channels, and measurements
can be considered as well, as long as they are not causally
connected. Differently, if one wants to map an input set of
two causally connected quantum operations, or possibly a
memory channel [9], one needs to move to higher level of
supermaps, namely supermaps of supermaps1. Since the
supermap is CP, one can introduce its Choi operator,
and then consider the physically admissible mappings.
In this way, one can build up a whole hierarchy of
supermaps by considering the completely positive maps
acting on the Choi operators of the lower level. An efficient
diagrammatic approach to treat this problem is provided
in ref. [10] by introducing the notion of quantum comb. The
normalization condition for such higher-level supermaps
has a recursive form, entailing the causal structure of
input-output relations.
Before concluding, we outline list here some remarkable

ante litteram examples of supermaps as well as some novel
applications of this theoretical tool:
1. Quantum compression of information and error

correction. The realization scheme of fig. 1 entails as a
special case the coding/decoding scheme at the basis of
quantum error correction and information compression.
Schumacher’s information compression [11] is a beautiful
ante litteram example of supermap, which turns a noise-
less communication channel on a smaller system into a

1Two causally connected quantum operations are indeed a four-
port circuit in which an input device can be plugged, i.e. referring
to fig. 1 they are a supermap with one-dimensional ancilla space B .
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channel that reliably transfers states in a larger Hilbert
space. Similarly, also error correction can be seen as a
supermap, now turning a noisy channel on a larger Hilbert
space into a noiseless channel acting on a smaller space.
In both cases the supermap is given by the insertion of
the input channel E between two deterministic channels
C and D (the coding and decoding maps, respectively),
namely S̃(E) =DEC, with the additional constraint that
the ancilla B in fig. 1 must be one-dimensional.
2. Cloning of transformations. An interesting appli-

cation of quantum supermaps is the optimal cloning
of transformations, instead of states. For example, an
optimal 1→ 2 cloner of unitary transformations would be
a four-port circuit that turns an unknown unitary channel
U =U ·U† into a channel S̃(U) that maximizes the
average channel fidelity with the bipartite channel U ⊗U .
This device has been recently studied in ref. [12], and has
optimal global fidelity F = (d+

√
d2− 1)/d3, surpassing

the value achievable by any classical cloning scheme.
The non-classical performances of the cloning circuit
essentially depend on the possibility of entangling system
Hin with the ancilla B in fig. 1 [12]. It is rather intriguing
to investigate the possible cryptographic connections of
the problem of optimally cloning unitary channels, which
appear to be a harder task than cloning pure quantum
states.
3. Discrimination/estimation of channels and memory

channels. A probabilistic supermap S̃ with one-
dimensional Kin and Kout sends a quantum operation E
into a probability p= S̃(E). In this case the Kraus opera-
tors Si are given by bra-vectors 〈vi| with |vi〉 ∈Hout⊗Hin,
and eq. (7) yields p=

∑
i〈vi|E|vi〉=Tr[EP ] where

P :=
∑
i |vi〉〈vi|. A set of such probabilistic supermaps

{ ˜S(j)} that sums up to a deterministic supermap
S̃=
∑
j S̃
(j) plays for channels of the same role that a

POVM plays for states: for any channel E , the supermap
S̃(j) gives a probability

pj = S̃
(j)(E) =Tr[EPj ] (25)

with pj ! 0, and
∑
j pj = 1. The normalization of

probabilities is ensured by the normalization condition
of eq. (10), which here reads

∑

j

Pj = IHout ⊗σ, (26)

σ=N∗(1) being a quantum state on Hin. This set of
probabilistic supermaps, completely specified by the
operators {Pj ! 0}, describes the most general setup one
can devise in order to test a given property of a quantum
channel, and can be used to discriminate between two or
more channels, or else to estimate a signal encoded into
a parametric family of channels and quantum operations.
Such a set of probabilistic supermaps is a particular case of
quantum circuit tester introduced in refs. [10,13] to treat
the discrimination of causally ordered sequences of chan-
nels and the discrimination of memory channels. We notice

that the particular case of probabilistic supermaps treated
in this paragraph has been independently introduced in
ref. [14] under the name process POVM (PPOVM ).
4. Information-disturbance trade-off for quantum

operations.When the spaces Kin and Kout are non-trivial,
a set of probabilistic supermaps {S̃(j)} summing up to
a deterministic one provides for channels the analog
of an instrument. Differently from a tester, which has
only classical output (the outcome j), the output of
such a supermap is both a classical outcome and an
output quantum operation. In this setting, supermaps
provide the opportunity to address the completely new
problem of information-disturbance trade-off for quan-
tum channels. For example, we may try to estimate a
completely unknown unitary U , producing at the same
time a channel that is the most possibly similar to U .
Similarly to the problem of cloning quantum channels,
the information-disturbance trade-off rises the intriguing
possibility of new cryptographic protocols based on
channels instead of states.
5. Quantum tomography of devices. An interesting

example of supermap is also that corresponding to tomo-
graphy of quantum devices based their local application
on bipartite states [15–17]. Tomography of quantum
operations is based on the supermap that sends an input
operation E into an output state S̃(E) = E ⊗I(F ) where
F is a faithful state on H⊗2in [15], so that the output
state is in one-to-one correspondence with the input
operation. Note that, in order to have such a one-to-one
correspondence, the map S(E) =

∑
i SiES

†
i must be

invertible, namely S(E) = 0 if and only if E = 0. Tracing
eq. (7) with an arbitrary operator O on Kout⊗Kin, one
can easily see that invertibility of S is equivalent to the
condition

span{S∗(O)|O ∈B(Kout⊗Kin)}=B(Hout⊗Hin), (27)

where span denotes the linear span of a set, and B(H)
the set of all operators on H. Since S̃ sets an invertible
correspondence between operations and states, one can
perform an informationally complete measurement on
the output state to completely characterize it. Note that,
using probabilistic supermaps, we can also combine
the deterministic map E (→ S(E) and the infocomplete
measurement in a single object, introducing the notion
of informationally complete tester (see also ref. [14]),
which is a tester with the property that the mapping
E→{p(j|E) = Tr[PjE]} is invertible. In this case, the
invertibility condition of eq. (27) becomes

span{Pj}=B(Hout⊗Hin). (28)

As regards tomography of a POVM P = {Pn}, this can be
identified with the quantum-to-classical channel EP (ρ) =∑
n Tr[Pnρ]|n〉〈n|, and the above scheme applies as well.
6. Programmable devices. Programmable quantum

channels [5] and measurements [18] are a remarkable
example of supermaps. Impossibility of ideal program-
mability suggests to study optimal programmability.
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One could consider either deterministic-approximate
case [18–20], or the probabilistic-exact one [21–23].
In these applications an input state σ (the program)
is turned into a channel Eσ or into a measurement
(POVM) Pσ = {Pσ,j}. For channels the supermap is
given by Eσ(ρ) = S̃(σ)(ρ) =Tr2[U(ρ⊗σ)U†], where U
is a unitary interaction. For programmable POVMs
one has the set of probabilistic supermaps {S̃(j)} such
that Pσ,j = S̃(j)(σ) =Tr2[Ej(I ⊗σ)], where {Ej} is
a joint POVM. Equivalently, regarding the POVM
as a channel from states to classical outcomes,
one has the set of probabilistic supermaps {S̃(j)}
with one-dimensional Hin and Kout so that p(j|ρ) =
S̃(j)(σ)(ρ) =Tr[Pσ,jρ] = Tr[Ej(ρ⊗σ)], where {Ej} is a
joint POVM.
In conclusion, we have introduced the concept of

quantum supermap, as a tool to describe all possible
transformations between elementary quantum objects,
i.e. states, channels, and measurements, with numerous
applications to quantum information processing, cloning,
discrimination, estimation, and information-disturbance
trade-off for channels, tomography and calibration
of devices, and quantum programming. A realization
theorem has been presented, which shows that any
abstract supermap can be physically implemented as a
simple quantum circuit. The generality of the concept
of supermap, describing any quantum evolution, allows
one to use it as a tool to formulate and prove general
theorems in quantum information theory and quantum
mechanics, and to efficiently address an large number of
novel applications.
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