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Abstract

We present an optical scheme that realizes the standard von Neumann measurement model, providing an indirect
measurement of a quadrature of the field with controllable Gaussian state-reduction. The scheme is made of simple optical
elements, like laser sources, beam splitters, and phase-sensitive amplifiers, along with a feedback mechanism that uses a
Pockels cell. We show that the von Neumann measurement is achieved without the need of working in an ultra-short pulsed

regime. © 1997 Elsevier Science B.V.

PACS: 42.50.~ p; 05.30.—d; 02.90.+ p

In the last chapter of his book [1] von Neumann
formulated a measurement scheme for the position §
of a particle based on a coupling with another parti-
cle. The interaction Hamiltonian between the two
particles — object and probe ~ is of the form H = 4P,
product of the object’s position § with the probe’s
momentum P. It is switched on with a very strong
coupling and for a very short time, and immediately
afterwards a measurement of the probe-particle posi-
tion Q is performed. By shifting the probe’s position
0 by an amount proportional to the object’s position
g, the coupling correlates the object’s position with
the probe’s ‘‘pointer observable’ 0. through which
the object’s position is obtained, thus leaving the
particle available for a forthcoming measure.

' E-mail; dariano@pv.infn.it.
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Originally, von Neumann introduced his model in
order to discuss the repeatability hypothesis sug-
gested by the Compton—Simons experiment. Later, it
remained as a reference point for theoretical models
of repeatable measurements, an ideal ‘‘gedanken mi-
croscope’’ with controllable disturbance on the sys-
tem (see, for example, Ref. [2], where the von Neu-
mann model is considered in relation to the problem
of position measurements below the standard quan-
tum limit).

Is it possible to achieve this model experimen-
tally? As a particle Hamiltonian, the q?ﬁ interaction
is rather artificial. However, we will show that in the
domain of quantum optics, one can achieve the von
Neumann measurement (i.e. with the same probabil-
ity distribution and the same ‘‘state-reduction’’)
without the need of either realizing the precise form
of the von Neumann Hamiltonian, or of experimen-
tally achieving the impulsive limit: and from this
prototype scheme for the von Neumann measure-
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ment we will have learned an interesting lesson
useful for future quantum measurement engineering.
The scheme we present is made of simple optical
elements, like laser sources, beam splitters. and phase
sensitive amplifiers, along with a feedback mecha-
nism that uses a Pockels cell. We will employ a
“*pre-amplification’” of the signal state and a “*pre-
squeezing’’ of the probe state: this is the basic idea
to improve the quality of a quantum measurement
[3], that has already been implemented in the realm
of back-action evading measurements [4-7].

For a single mode of the radiation field, the
optical observables that correspond to particle posi-
tion § and momentum j are represented by any two
conjugated quadratures £, and X, . ,, with com-
mutator [ £,. %, ,,1=1/2, the generic quadrature
being defined as follows,

Rp=13(d'e'? +ac™'?). (1)

The quadrature &, can be ideally measured by means
of a homodyne detector. in the limit of strong coher-
ent local oscillator (LO). ¢ bcmU the phase of the
signal mode relative to thc LO * In Eg. (1), @ and
a~ 1 are the bosonic annihilation and creation opera-
tors of the field mode of interest, with commutation
[a, a 1= 1.

Now we need to settlc the general theoretical
framework for describing repeatable measurements.
In order to have a measurcment that does not com-
pletely destroy the state that the system had before
the measurement, the scheme must involve a probe
that interacts with the system and later is ““mea-
sured”” to yield information on the original state of
the system [2]. This indirect measurement scheme is
completely specified once the following ingredients
are given: (i) the unitary operator U that describes

the system—probe interaction; (ii) the state | ¢) of
the probe before the interaction; (iii) the observable
X which is measured on the probe. If, at the end of
the system—probe interaction, one now considers
another measurement on the system — say the ideal
measurement of an observable ¥ (both X and Y
have continuous spectra, with cigenvectors | v) and

Y For a tutorial review on concepts of quantum measurements
and applications to quantum optics, sce Ref. [8].

| y), respectively), then the conditional probability
density p(y| x) — of getting a result y from the
second measurement given the result of the first one
being x — can again be written in terms of the Born
rule p(ylx)dy={yl 9, |y> upon defining a *‘re-
duced state’” O, as follows,

D(x)007 () )
.= — = , 2

e[ 007 () O( x)]

fo)]

where the system operator O(x) is given by

O(x)=<(x101¢), (3)
and
da(x) =07 (x)Q(x) dx (4)

is the **probability operator-valued measure”” (POM)
of the apparatus [2], which provides the Born rule for
the measurement as follows,

p(x) da="Tr[ 6 dp(x)]. (5)
Eqs. (2)-(5) are the most general form of the state-
reduction and of the Born rule for a ‘‘pure’ or
‘‘quasi-complete’’ measurement, namely a measure-
ment that leaves pure states as pure (due to the pure
state preparation of the probe). Apart from an irrele-
vant phase factor, the non-unitary reduction opera-
tor O(x) uniquely characterizes the quantum mea-
surement, and two measurements that have the same
operator O(x) will be considered as identical. both
having the same probability density (5) and the same
state-reduction (2). On the other hand, the fact that
many measurements can share the same POM d alx)
— while having different state-reduction — is immedi-
ately apparent from the fact that a unitary transfor-
mation of the reduction operator 0(x) = D'(x)=
V(x)0(x) changes only the state-reduction. but
leaves the POM (4) invariant. A unitary transforma-
tion V(x) that depends on the result x of a measure-
ment is the quantum mechanical description of a
feedback mechanism, which in turn represents the
casiest way of engineering a prescribed (admissible)
state reduction.

In the above framework, the standard von Neu-
mann measurement model is given by the Gaussian
reduction operator

P R K U 1)
/ 27A° P

n>

, (6)

44°
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which results from an impulsive interaction Hamilto-
nian c’]‘l3 with the probe-particle prepared in a Gauss-
jan wave packet. From Egs. (4) and (5) it follows
that the experimental probability density p(g)=
Trl 02 7(¢)2(¢)] is just a Gaussian convolution of
the ideal probability distribution {g|Qlg), with
additional r.m.s. noise given by A (for interaction
time 7= k' with x the interaction strength, A? is
simply given by the variance of the probe-particle
Gaussian wave-packet).

Now we present the quantum-optical scheme that
performs the standard von Neumann measurement of
the quadrature %, of the radiation field in Eq. (1). In
the following we will consider a fixed phase ¢,
using the short notation =23X,, §=2%,,,,. In a
fully optical measurement scheme the simplest choice
for a measuring probe is just another mode of the
field. We consistently use capital letters for the probe
operators: thus, A and A" will denote the annihila-
tion and creation operators of the probe mode,
whereas X and ¥ will be used to represent any
couple of conjugated quadratures of the probe for
fixed phase ¢'. With this notation, the optical equiv-
alent of the standard von Neumann Hamiltonian (for
indirectly measuring the quadrature X by probing
X) is given by

H=3#7. (7)

Note that the choice of the phases ¢ and ¢’
totally free, and is ultimately related to the definition
itself of the annihilation and creation operators of the
two modes. From the definition (1) of X, we can
immediately see that, independently of the frequency
of the two field modes, the Hamiltonian (7) cannot
be realized in the rotating wave approx1mauon due
to the counter-rotating terms Aa and A'4". On the
other hand, an impulsive realization of this Hamilto-
nian, as in the original formulation of von Neumann,
again is not feasible in the optical domain, because it
would require switching the interaction faster than
the optical frequency. However, as we will show in
the following, we do not need to realize the Hamilto-
nian (7) in order to achieve the von Neumann mea-
surement.

Instead of the Hamiltonian (7) we consider the
interaction of the two field modes at a beam splitter.

This is described by the unitary evolution operator

(8]
UA=exp[atan‘/(1 - n)/n(ab?——a?b)]. (8)

The unitary evolution operator (8) has no counter-
rotating terms: in the following we will take both
modes at the same frequency, so that the operator (8)
will retain its time-independent form also in the
interaction picture (the simple form of the operator
(8) holds for an appropriate choice of the modal
phases, which can be achieved by just changing
optical path lengths). Expressed as a function of the
field quadratures, the unitary operator U reads

0=exp[2i atany/( 1 —n)/n(j‘))f—fc)?)]. (9)

The operator in Eq. (9) can be conveniently factor-
ized into the product of elemental unitary evolutions
by explomng the reahzatlon of the su(2) algebra
J.=2i9X, J_=2i8Y, J = i( XY — £9), where one
can easily verify the su(2) commutation relations
[J+, J_ ]—2J,,[J,, J L= +J . Using the BCH
formula for the SU(2) group * the operator U can be
written as follows,

0=eza,/<1—n)/n9in‘(w X9)g=2ii=m/ni? (10)

The last factor on the right of Eq. (10) has the same
form as the von Neumann unitary evolution for
Hamiltonian (7). The physical meaning of the other
two factors will become clear after evaluating the
reduction operator £2(x) corresponding to the uni-
tary evolution in Eq. (10).

Let | @) be the state preparation of the probe
mode before the measurement (the state of the field
mode A that enters one port of the beam splitter),
and let us denote by | x) the eigenvectors of the
quadrature X effectively measured at one output port
of the beam splitter by means of a homodyne detec-
tor. Then, £2(x) can be evaluated through the fol-
lowing steps,

* Note that the fact that our realization of the su(2) algebra does
not preserve Hermitian conjugation is irrelevant for the group
multiplication, as in the BCH formula we are actually using the
complexification of the group.
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Xe—zi\/(_l—m/n_n7|¢>
Zezn/(l—vﬁﬁ_\;niﬁ
< <X1n7i/\;fe—2l‘/(l—n)/nf); | <P>

iF

N (TR
e I=m/mit g o)
= Dy(J(r=m)/m x)S;(n ' 7%)
X~V (k1= m) )]
(11)

where S,(r) and D«) denote the squeezing and
displacement operators of the mode a, namely

S\“( ,.) - eflr‘({j'+,\”'.§)’ DAu( O[) — eutfﬂﬁu’

(12)
and we used the quadrature differential representa-
tion

(eIAX ) e) =f(x =310 )e( %),

o(x) = (xle). (13)
The squeezing and displacement unitary operators

that appear in the last step of Eq. (11) represent an
additional back action from the measurement, Le.

SQUEEZER /

Gy=0

0y 1

SQUEEZIR

they just change the state-reduction by an additional
unitary evolution, but they do not change the POM,
which for the reduction operator (11) is given by

4 %)
=dx OF(x)Q(x)

:dxn_]/zltp[n‘l/z(xf (1 _77)1/23')] 12,
(14)

For very high reflectivity at the beam splitter n — 0
and with the probe prepared in the vacuum statc
¢y =10, Eq. (14) would approach the Gaussian
von Neumann POM from Egs. (4) and (6) with
variance A = ﬁ/Z. However, the reduction opera-
tor (11) is still different from that in Eq. (6), and in
order to make them equal we need to remove the
squeezing and the displacement back-action terms.
The displacement term is a unitary transformation
that depends on the measurement outcome, and hence
it can be compensated by an appropriate feedback
device. On the other hand, the squeezing term can be
balanced by an inverse squeezing transformation of
the mode a performed after the displacing feedback:
this will be the last transformation on the mode .
and we will refer to it as back-squeezing. For vanish-
ing m one would nced increasingly large back-

muo,/ SQUEEZER /
=9l = np——

=

—A*———G,:(] - )
/’”/ BS ()

1O

CURRENT N

ff B o0

Fig. 1. Outline of the proposed experimental setup to realize a von Neumann measurement of a quadrature of the clectromagnetic ficld. BS

denote a beam splitter; PC(6) denotes a Pockels cell with transmissivity .
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squeezing, and it may be more convenient to com-
pensate the vanishing n by squeezing the probe state
[ @). In fact, squeezing transforms the quadrature X
as follows.

2 81(r)28,(r) =e'%. (15)
Hence the factor (1 — 1)'/? in the POM (14) can be
removed by pre-squeezing the initial state of the
system with squeezing parameter r = — 2In(1 — ).

Such pre-squeezing modifies the reduction operator
2(x) in Eq. (11) into the following one,

Q(x) > Q(x)=n"[n 2 (x-8)],  (16)

where now we have changed the back-squeezing as
follows,

A

$(in n'/?) - $i(1n 7'/2)8,[in(1 — 1) 7'

= S8i[3In(n(1 - n))]. (17)
Then, in order to get a tunable variance for the

reduction operator, one can change the state prepara-
tion | ¢) of the probe. For the squeezed vacuum

| ) =S,(In o0'/2)]0), (18)

the reduction operator (16) becomes

N 2\ x— %)
O(x)= (————) exp[——(—)—], (19)

TNo no

and the operator (x) in Eq. (19) is of the same
form as the von Neumann one in Egq. (6), with A
=yno /2.

The experimental set-up to perform the optical
von Neumann measurement is sketched in Fig. 1.
The pre-squeezing and back-squeezing transforma-
tion described by the unitary operators

Si[—4n(1=m)]. Si[3m(n(1-m)],  (20)
are.the two extremal steps of the sequence of optical
operations on the system mode. They can be accom-
plished by two phase-sensitive amplifiers (PSAs) [3]
with gains G, =(1—1)"" and G,=n(1 — n), re-
spectively. (The PSA ideally amplifies the quadra-
tures of the field with a phase-dependent gain, namely
R,=G"""%,, 8ysnp=G" R4 pp- Itcan be at-
tained through degenerate three- or four-wave mix-
ing.) In the same way the probe state (18) can be
achieved using a third PSA that amplifies an input

vacuum field with gain G, =o. After the first
squeezing, the state of the @ mode is entangled with
the squeezed vacuum state (18) of the A mode
through the beam splitter with transmissivity \/—7—7 ,
and at the reflected output beam the quadrature X is
homodyne detected. The displacement
ﬁ(1/(1 —mn)/mx) is achieved by combining the
transmitted beam with a strong coherent LO | 8)
(B> ) in a beam splitter with a transmissivity
§— 1, such that | B1V1—6=(1—n)/nx (the
LO is at the frequency of the signal mode a). The
parametric dependence on the homodyne outcome x
is carried out by driving the LO with the homodyne
photocurrent, for example by stimulating the laser
that provides the LO by the photodetection current
itself. However, this method is expected to fail for
small ‘‘photocurrents’’ x, because it would bring the
LO laser below threshold, thus losing the phase of
B. A better way to achieve this feedback is to
provide a current-dependent transmissivity 6(x) for
the beam-splitter, making use, for example, of a
Pockels cell, and working in the linearity regime
6 o x of the cell (a similar feedback mechanism has
been experimentally implemented in Ref. [10]). Of
course, good phase coherence between the PSA
pumps and the LO may be technically difficult to
achieve. Finally, also note that the quadrature phase
¢ can be changed in many different ways by tuning
any one of the relative phase-shifts between the
pumps and the LO.

In conclusion, we have presented a quantum-opti-
cal scheme that realizes the standard von Neumann
model, a model for repeatable quantum measure-
ments with controlled state-reduction. Our scheme
uses simple optical elements, like beam-splitters and
squeezers. We have seen that, contrarily to the cus-
tomary modeling of repeatable measurements, there
is no need of working in an ultra-short pulsed regime.
We have also seen how the precise form of the
state-reduction can be engineered by means of a
feedback mechanism that uses a Pockels cell: we
think that this method can be of use in more general
situations, for controlling the back-action of a quan-
tum measurement. Finally we hope that our scheme
will be implemented experimentally, and will be of
help for a deeper understanding of the physical
mechanisms underlying quantum measurements.
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