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! Abstract

We show that it is possible to enhance the detection efficiency of homodyne tomography by injecting a broad band
squeezed vacuum into the cavity that contains the field whose state one wants to recover before it is contaminated by the

injected signal.

PACS: 03.65.Bz; 42.50.Dv; 42.65.Ky

After the seminal work of Vogel and Risken [1]
it became clear that one could reconstruct the quan-
tum state of the radiation field from experimental data.
Smithey, Beck, Raymer and Faridani [2] were able
1o give the first image of a squeezed vacuum, plot-
(ing its Wigner function obtained from backprojected
homodyne data. That image reconstruction was since
named “optical homodyne tomography”. A homodyne
tomography of a single electromagnetic mode a con-
sists of an ensemble of repeated measurements of field
quadratures &g = %(a"c"'ﬁ +ae~®) for various phases
¢ relative to the local oscillator of the homodyne de-
tector. However, the method first employed in Ref. [2]
and other methods suggested later [3] need a coarse-
graining, because in order Lo reconstruct the Wigner
function from the Vogel and Risken result [ 1] one has
to perform analytical integral transforms of the homo-
dyne probability distributions. In this way a smooth-
ing procedure is required, and this was performed by
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methods which are standard in tomographic imaging
[4]. This procedure sets the resolution with which the
Wigner function is determined, and suffers systematic
errors related to the filtering cutoff of the backpro-
jection. Moreover, the tomographically reconstructed
distributions are all affected by the nonunity efficiency
7 at detectors, and what is really reconstructed is, at
most, a smoothed Wigner function. Hence, the limited
quantum efficiency of detectors makes the reconstruc-
tion of the Wigner function problematic.

On the other hand, an exact method to recon-
struct the density matrix avoiding the evaluation of
the Wigner function as an intermediate step and any
smoothing procedure on data has been proposed in
Ref. [5], and in Ref. [6] the density matrix is recon-
structed by averaging a set of sampling functions with
respect to the measured quadrature values. Recently,
D’ Ariano, Leonhardt and Paul [7,8] provided a sim-
ple analytic form for the method of Ref. [5], giving
an explicit relation between the density operator p of
the field and the tomographic homodyne probabili-
ties, and this relation also holds for generic quantum
efficiency 7 of detectors. They showed, indeed, that

0030-4018/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved.

PIFS0030-4018(96)00505-6



166 G.M. D'Ariano et al./Opties Communications 133 (1997) 165-169

the density matrix can be experimentally sampled for
quantum efficiency 7 < 1, but there is still a lower
bound for 17 which depends on the vector basis cho-
sen (o represent the density matrix: for number and
coherent state representations such bound is n = 0.5.
On the other hand, the overall quantum efficiency
of homodyne detection can be enhanced using anti-
squeezed preamplification at the photodetector [9],
recent results have indicated indeed that noiscless
amplification is possible [ 10].

In this work we will show that part of the overall
quantum efficiency can be enhanced by squeezed vac-
uum techniques, similar to those introduced in Ref.
[11] as a way to slow down the destruction of quan-
tum coherence, and in this respect this paper can be
considered as a generalization of Ref. [11] suitable
for quantum state reconstruction.

In the notion of “quantum efficiency™ one should
include not only the probability of conversion of pho-
tons into electric pulses during the homodyne mea-
surement, but also the vacuum fluctuations entering
the cavity used to generate the field state that one
wishes to reconstruct. As we will show below, this
means that the vacuum fluctuations entering the cav-
ity inhibit the complete reconstruction of the radiation
state generated inside. Actually, in the measurement
process involving a cavity — which is the most fre-
quently used in quantum optics — one wants that the
measured state remains inside the cavity, and, at the
same time. a field connected to the intracavity one is
detected outside. In the following we will show how
this requirement actually limits the overall quantum
efficiency of the measurement, whereas it is possible
to overcome such efficiency loss by squeezing some
vacuum modes outside the cavity. It is clear that the
squeezed vacuum entering the cavity generally affects
the radiation state inside the cavity after the measure-
ment, so that only a single measurement can be done
without contaminating the measured state.

Let us consider a ring cavity with a partially lossy
mirror. This latter can be modeled by a beam splitter
if the time at which we perform the measurement is
shorter than the typical round trip time of the cavity.
The lossy mirror is depicted in Fig. 1. The mode a
is the intracavity mode, whose density matrix f, we
want to measure. The free-space mode b is initially
vacuum, then it interacts with a at the mirror and trans-
forms into the free-space mode d = Ut bl, which is

Otall = ¢
cavity
&
a Utbl =d
4 free space
b

Fig. |. Scheme of the Heisenberg evolved fields at the lossy mitror
of a ring cavity (see text).

now a linear combination of a and b. Analogously, the
intracavity mode « interacts with the vacuum mode b
at the mirror, and transforms into the new intracavity
mode ¢ = U'al. Our aim is to measure g, through
a tomography at the output mode d. This scheme can
also be considered as a prototype case of an indirect
measurement, and the following arguments also apply
to any system coupled to another one on which even-
tually the measurement is performed [12]. Let us se-
lect the path lengths of all involved modes in such a
way that the unitary in-out Heisenberg evolution is

()e(om(s). o

with unitary scattering matrix M given by

M:<cosx—sinx) . @)

sinKk  COSK
In Eq. (2) cos® k = | —n is the reflection coefficient,
and sin” x = n is the transmission one. The transfor-
mation (1) with matrix (2) is achieved by the unitary
operator

ﬁ'zexp{x{abT —a'h)], (3)

which can be ordered normally with respect to the
mode b by using the Backer-Campbell-Hausdorff for-
mula for the angular momentum group [ 13]

b

I Tt s Ploka.
ﬁ = elan walh |COSK|“ a—h DC Lan ka [4]

In the Schriddinger picture the joint density matrix of
the input fields evolves as follows

Ry =0p.®0)(0[0", (5)
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and any desired expectation valuc of operators corre-
sponding only to the evolved mode d = Utal can be
obtained with the reduced density matrix

,ad = TrbchdJ . (6)
Using Eq. (4), it is easy lo obtain
ﬁd' =Tryle tan xubT[ COS K|nl'u

jal @ tan e F=]

% pﬂ @ |D>bb(0|| COSs K|

=Trp lcmn wab] | cos K|ﬂ a

X pal cos K|“ “|U>bb {Ole” i "“er

Z (=) (tanx) aJ‘|COS «|7 ”pa| cos K|ﬂ a1k,
(N

Hence, the two matrices in the number representation
are connected as follows

s
(n|pa|m) = (cos k)" Z{ ¥ (sink)*
k:ﬂ

\ ol
m+k n+k o
x [( " ) ( s )j[ {n+ k|pam+ k) |

(8)

or, inversely,

o
{n]palm) = (cosw) "7 Z(tan e
k=

, ]l,."’?,
X {(m;—k)(n—:k)] {n + k|pa|lm + k) .

(%)

Egs. (8) and (9) coincide with an analogous result
obtained in Ref, [ 14] in a different context: here, Egs.
(8) and (9) give the way to connect the desired den-
sity matrix (n|p,|m) in the number representation fo
the measured one (1| f,|m). Eq. (8) represents a con-
volution of the number distribution with the binomial
probability, which produces the undesired smearing
effect due to vacuum fluctuations.

We can evaluate the relation between measured
probabilities for the d mode and density matrix
of the @ mode in a more general way. The mo-
ment generating function y.(r, ¢¢) of the quadrature

- %(de"‘f’ + dfe*®) at the output (the phase ¢
is controlled by the experimentalist) can be written
in the two equivalent - Schrodinger or Heisenberg —
pictures as follows

Xu’(r, ‘25) = Tr(er'rb.f, ﬁud) = Tr(eir{u ﬁa & |O>bb<0| A
(10)

The nth derivative of y;(r, ) with respect o the pa-
rameter r is connected with the nth moment of the out-
put quadrature cf“g,. We can easily factor out y,(r, ¢)
into two components, each pertaining a single input
mode. One has

xa(ryd) = p(0[Trg[erinwdezeosnhe) 5 110),
= xo(rym. @) xp(ry/ 1 —.9) (11

where y.(A, @) = Tr,[ ""”fﬁpc,], and yp(A,¢) =
{U|ef'*f’~*|0) and we sel i = sin® & which represents
the mirror transmissivity. The Fourier transform of
Yd(r,¢) gives the marginal probability distribution
pafx,¢) of the quadrature fﬂ;,. of the detected output
field

+ oo

P (x! ¢}) =

—

3 “Yalr,¢) . (12)
T

and, similarly, y,(A, &) and y,(A. @) are related to
the quadrature probability distributions of their respec-
tive modes. Our aim is now to connect the density ma-
trix elements of g, with the detected probability dis-
tribution py(x, ¢): this will give us the desired lomo-
graphic formula. We start {rom the operator identity

[7]

’ d _ncd' ivhi
W] /_{'ﬁ / ﬂc—;,—(%x”(r,(ﬁ] ’ (13)
[ (?T 4
0 —c0

and we substitute Eq. (11) into Eq. (13), thus obtain-

ing

k2
: _/dfﬁ [ arlr it
Buifie 5y
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T
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Using Eq. (12) one has

bl + o toa
T 4
0 — 0

L
| -7
% pite V! | mf —2 00 (15)
Vo
which provides the desired relation
‘r'dd) +00 / :
= = lxpilx, K| ——a )
fa / = ./t pa(x,P) (\/ﬁ qb)
0 — 30
(16)
where
ot oLt o L 5t
K{x)=—Re pdreel™ g~ | v/ ——9
2 ! g \. 7
0
(17)

For b in the vacuum state, one has

1 — 1 — ¢
X lr ETT])’GS) =cxp(— Snnrz)' (18)

which gives the same kernel oblained in Ref. [7] for
homodyne tomography with quantum efficiency 7, i.e.

1 i [ - 5
K(x) = 5 Re] drrexp ( 8????.?’2 + H”.?C) oo G
0

Hence, our present indirect measurement scheme is

equivalent to a direct measurement in the presence ol

nonunity efficiency. Therefore, we can use the theo-
rem of Ref. [7], namely: for the number representa-
tion the matrix elements of K(x — éy) are bounded
for 1 > 0.5, and in this case the density matrix can be
statistically sampled from experimental data. In our
case, however, 17 represents the cavity mirror transmis-
sivily, and it is usually very small (i.e. good cavities).
We will show now how this problem can be overcome
using a low transmissivity mirror, and compensaling
the effect of loss by means of a squeezed vacuum at
the input port b.

For b in a squeezed vacuum |0, &) = §(£)|0), with
$(¢) = expli({(ah)? — £a®)] and ¢ = |{|e¥ one
has [13]

xo(A, @) = (0,210, 2) = (0|81 (£)e™5()H]0)

= (0]e™ s |0) = exp(—4A2/8) | (20)
where
A=cosh |{]| +e=2® sinh|{] . (21)

We lock the phase i of the squeezing to the homodyne
phase ¢ in order to have ¢ — 2¢b = a1, namely 4 =
exp(—|£]). The kernel in Eq. (17) becomes

e )

I E =,
K(x) = 3 Re /drr exp (f?‘x 4+ 42 | 87}.?? rz)
0

(22)

which is of the same form of Eq. (19), but now with
a renormalized quantum efficiency given by
Vi

AE b Ly
The effective efficiency (23) can be made in principle
arbitrarily close to unity for sufficiently large squeez-
ing parameter £, and, in principle, this can be achieved
also for very low cavity transmissivity 5. However,
this does not mean that the measurement perturbation
on the intracavity radiation can be made vanishingly
small. In fact, as shown in Ref. [ 16], such an indirect
extracavity measurement produces a von Neumann re-
duction with strength that depends only on the over-
all effective quantum etficiency, because the squeez-
ing needed to keep 77 as constant also amplifics the
perturbation back to a finite extent.

In conclusion, we have shown that squeezing the
vacuum at the unused port of a cavity output mirror,
with the phase of the squeezing locked to the local
oscillator, allows us to detect the state of radiation
inside it, even for low mirror transmissivity, i.e. for
good cavities. The measurement however, has to be
performed before the input squeezing alters this state,
which, on the other hand, should be reprepared af-
ter each measurement. This can be considered a tech-
nique useful for enhancing the overall quantum effi-
ciency of tomographic detections of a field prepared
inside the cavily in a transient regime. It could be use-
ful when one wants to reconstruct the Wigner func-
tion of Schrodinger cat states, because the measure-
ments have to be performed in a time much shorter
than the decoherence time, which typically goes as

(23)

i
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the inverse of the cavity damping constant times the
average photon number. Of course, within a high fi-
nesse cavity, one should inject a broad band squeezed
vacuum, with frequency centered around that of the
signal mode, otherwise one should have considered a
non-white spectrum,

Finally, one could see from Eq. (23), that for exam-
ple, by using cavity with transmissivity within 107%-
107, a squeezed vacuum of the order of 80% allows
an improvement of the overall quantum efficiency by
a factor 5,

From the above considerations we note how gentle
the experimentalist has to master the vacuum when
he/she wants to reconstruct quantum states.

This work has been partially supported by the Eu-
ropean Community with the Human Capital and Mo-
bility Programme.
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