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Abstract. It is shown how a C*-algebra representation of the transformations of a physical system can be derived from two 
operational postulates: 1) the existence of dynamically independent systems; 2) the existence of symmetric faithful states. Both 
notions are crucial for the possibility of performing experiments on the system, in preventing remote instantaneous influences 
and in allowing calibration of apparatuses. The case of Quantum Mechanics is thoroughly analyzed. The possibility that other 
no-signaling theories admit a C*-algebra formulation is discussed. 
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1. INTRODUCTION 

In a set of recent papers [I, 2, 3] I showed how it is possible to derive the mathematical formulation of Quantum 
Mechanics in terms of complex Hilbert spaces and C*-algebras, starting from a small set of purely operational 
Postulates concerning experimental accessibility. In the present manuscript I will focus on C *-algebra, showing how a 
C*-algebra representation of the transformations of a physical system can be derived from two operational postulates 
only, concerning the existence of: I) dynamically independent systems; 2) symmetric faithful joint states of two 
identical systems. Both postulates are crucial for the possibility of performing experiments, the former preventing 
uncontrollable remote instantaneous influences, the latter aUowing calibration of experimental apparatuses. 

The C*-algebra representation of the transformations is derived from the postulates via a Gelfand-Naimark-Segal 
(GNS) construction [4] based on the Jordan decomposition of the symmetric faithful state. The whole constmction 
holds for finite dimensions, but it is vahd also for infinite dimensions with the proviso that the Jordan decomposition 
exists on the Banach space of effects. The notion of adjoint of a transformation stems from that of faithful state, and 
generally depends on it, thus leading to different C*-algebra representations. On the other hand, the two postulates 
together imply that the linear space of "effects" of two identical independent systems is the tensor product structure of 
the spaces of the component systems. 

A thorough analysis wiU show that for the case of Quantum Mechanics the adjoint is actually independent on the 
faithful state. However, as it wiU discussed in the conclusions, the C*-algebra representation of transformations is not 
sufficient to derive Quantum+Classical Mechanics, as for the customary operator algebras over Hilbert spaces, and 
in order to select this case additional postulates are needed. Possible candidates for such postulates, along with the 
possibility for other no-signaling theories to admit a C * -algebra representation of transformations, are discussed at the 
end of the paper 

2. THE POSTULATES 

The general premise of the present axiomatization is the fact that one performs experiments to gather information 
on the state of an object physical system, and the knowledge of such state will then enable to predict the results of 
forthcoming experiments. Moreover, since we necessarily work with only partial a priori knowledge of both system 
and experimental apparatus, the rules for the experiment must be given in a probabflistic setting. Then, an experiment 
on an object system consists in making it interact with an apparatus, producing one of a set of possible transformations 
of the object, each one occurring with some probability. Information on the state of the object at the begirming of the 
experiment is gained from the knowledge of which transformation occurred, which is the "outcome" of the experiment 
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signaled by the apparatus. For the above reasons we can logically identify the experiment with a set ofprobabiUstic 
transformations. 

We can now introduce the two postulates. 

Postulate 1 (Independent systems) There exist independent physical systems. 

Postulate 2 (Symmetric faithful state) For every composite system made of two identical physical systems there exist 
a symmetric joint state that is both dynamically and preparationally faithful. 

3. THE STATISTICAL AND DYNAMICAL STRUCTURE 

The starting point of the axiomatization is the identification experiment =set of transformations that can occur on the 
object. The apparatus signals which transformation ^y of the set A := {^y} actually occurs. Now, since the knowledge 
of the state of a physical system allows us to predict the results of forthcoming experiments on the object, then it will 
allow us to evaluate the probability of any possible transformation in any conceivable experiment. Therefore, by 
definition, a state co of a system is a rule providing probabilities of transformation, and co(^) is the probability that 
the transformation ^ occurs. We clearly have the completeness Z^^ eA^l-^^) = 1. and assume co(j^) = 1 for the 
identical transformation J^, corresponding to adopting J^ as the free evolution (this is the Diracpicture, i. e. a suitable 
choice of the lab reference frame). In the following for a given physical system we will denote by 6 the set of all 
possible states and by T the set of all possible transformations. 

When composing two transformations ^ and £^, the probability p{£^\si/) that £^ occurs conditional on the previous 
occurrence of ^ is given by the rule for conditional probabilities p{£^\si/) = (o{£^ o ̂ ) / c o ( ^ ) . This sets a new 
probability rule corresponding to the notion of conditional state co^ which gives the probability that a transformation 
,^ occursknowingthatthe transformation^ has occurred on the object in the state a, namely co^ = c o ( o ^ ) / c o ( ^ ) 
' (in the following the central dot "•" will always denote the pertinent variable). We can see that the notion of "state" 
itself logically implies the identification evolution=state-conditioning, entailing a linear action of transformations 
over states (apart from normalization) si^co := co(- o ̂ ) : this is the same concept of operation that we have in 
Quantum Mechanics, which gives the conditioning co^ = ^co/^co(J^) . In other words, this is the analogous of 
the Schrodinger picture evolution of states in Quantum Mechanics (clearly such identification of evolution as state-
conditioning also includes the deterministic case ^co = c o ( o ^ ) of transformations^ withco(^) = IVco G 6—the 
analogous quantum charmels, including unitary evolutions. 

From the state-conditioning rule it follows that we can define two complementary types of equivalences for 
transformations: dynamical and informational. The transformations £^\ and ^2 are dynamically equivalent when 
co ĵ = 00̂ 2 Vco G 6 , whereas they are informationally equivalent when co(^i) = 00(^2) Vco G 6 . The two 
transformations are then completely equivalent (write si/\ = s^i) when they are both dynamically and informationally 
equivalent, corresponding to the identity ()){SSosi\) = (o{£^o£/2), Vco G 6 , V,^ G T. We call effect the informational 
equivalence class of transformations^. In the following we will denote effects with the underhned symbols ^ ^ etc., 
or as [̂ Jeflf, and we will write x/^e ££_ meaning that "the transformation ^ belongs to the equivalence class ^ ' , or 
"^0 has effect ^ " , or "^0 is informationally equivalent to ^ " . Since, by definition one has co(^) = (o{£f), we will 
legitimately write co(^) instead of co(^). Similarly, one has co^(.^) = co^(^) , which implies that (o{£^ os^) = 
c o ( ^ o ^ ) , leading to the chaining rule M_o .ei G SSQ.BJ corresponding to the "Heisenberg picture" evolution of 
transformations acting on effects (notice how transformations act on effects from the right). Now, by definitions effects 
are linear functionals over states with range [0,1], and, by duality, we have a convex structure over effects, and we will 

' M. Ozawa noticed that the definition of conditional state needs to assume that 

^ ffl(%oi/) = ffl(i/), VB, V J / . 

Such assumption which seems not implicit in the present axiomatization, would correspond to a kind of "no-signaling from the future". It is 
presently under consideration if this must be considered as an additional postulate. Notice that such assumption seems to be needed whenever a 
notion of conditional state is considered which involves transformations of the system. In the present context the notion of conditional state is 
intimately related to that of "effect" and to the action of transformations over effects. 
^ This is the same notion of "effect" introduced by Ludwig [5] 
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denote their convex set as *p. An observable is just a complete set of effects L = {/,} of an experiment A = {^y}, 
namely one has /, = ^ Vj (cleariy, one has the completeness relation Y.ih = 1̂ )- We will call the observable L = {/,} 
informationally complete when each effect / can be written as a real linear combination / = Y.iCi{l)li of elements of 
L, and when these are linearly independent we will call the informationally complete observable minimal. ^ 

The fact that we necessarily work in the presence of partial knowledge about both object and apparatus corresponds 
to the possibility of incomplete specification of both states and transformations, entaihng: a) the convex structure 
on states; b) the addition rule for coexistent transformations, i. e. for transformations £/\ and ^2 for which 
co(^i) + 00(^2) < 1, Vco G 6 (i. e. transformations that can in principle occur in the same experiment). The addition of 
the two coexistent transformations is the transformation ^ = ^ 1 + ^2 corresponding to the event e = {1,2} in which 
the apparatus signals that either si/\ or ^2 occurred, but does not specify which one. Such transformation is uniquely 
determined by the informational and dynamical classes as Vco G 6 : (o{£/\ + ^2) = co(^i) + 00(^2), (-ê i + ^2)^^ = 
£/\(0 + .si/jCt). The composition "o" of transformations is distributive with respect to the addition "+". We can also 
define the multiplication A ̂  of a transformation ^ by a scalar 0 < A < 1 as the transformation dynamically equivalent 
to ^ , but occurring with rescaled probability co(A^) = Aco(^). Now, since for every couple of transformations ^ 
and ,^ the transformations A ^ and (1 - A).^ are coexistent for 0 < A < 1, the set of transformations also becomes 
a convex set. Moreover, the transformations make a monoid (i. e. a semigroup with identity), since the composition 
^ o ^ of two transformations ^ and £^ is itself a transformation, and there exists the identical transformation J^ 
satisfying J ^ o ^ = ^ o j ^ = ^ f o r every transformation ^ . Therefore, the set of physical transformations T is a 
convex monoid. 

It is obvious that we can extend the notions of coexistence, sum and multiplication by a scalar from transforma-
tions to effects via equivalence classes. In this way also effects make a convex set. As an additional step we can 
extend the convex monoid of physical transformations T to a real algebra T R by taking differences of physical trans-
formations, and multiply them by scalars A > I. We will call the elements of T R / T generalized transformations. 
Likewise, we can introduce generalized effects, and denote their linear space as *PR. On generalized effects we 
can introduce the norm | |^ | | := sup^gg |co(^)|, which allows us to introduce also a norm for transformations as 
ll^ll := suptpj^gii^ii^i | | ^ o i / | | = suptpj^gii^ii^i sup^gg (o{^o£/). Closure in the respective norm topologies make 
*PR a real Banach space and TR a real Banach algebra.^ 

A purely dynamical notion of independent systems coincides with the possibility of performing local experiments. 
More precisely, we say that two physical systems are independent if on the two systems 1 and 2 we can perform local 
experiments A(^) and AP),i. e. whose transformations commute each other (i. e. ^ ( ^ ^ o ^ P ) = ^ P ) o ^ ( i ) , V^(^) G 
A(^) , V,^P) G RP)). Notice that the above definition of independent systems is purely dynamical, in the sense that it 
does not contain any statistical requirement, such as the existence of factorized states. The present notion of dynamical 
independence is so minimal that it can be satisfied not only by the quantum tensor product, but also by the quantum 
direct sum [6]. Nevertheless, in Sect. 5 a dimensionality analysis will show that, in conjunction with the existence of 

^ With a little notational abuse sometimes we identify^ = 1, i. e. the identity effect with the constant functional equal to 1. 
'' In previous literature the existence of informationally complete observable has been taken as a postulate. However, in the present context it is 
easy to show that it is always possible to construct a minimal informationally complete observable starting from a set of available experiments. 
The proof is by induction, and runs as follows. By definition there must exists a spanning set for ^ = Span£(^) that is contained in the convex 
hull ^ of available effects. The maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has 
finite cardinality equal to dim(^]j). It remains to be shown that it is possible to have a basis with sum of elements equal to 1, and that such basis is 
obtained operationally starting from the available observables from which we constructed ^ . 

If all observables are uninformative (i. e. with all constant effects °<= J^), then % = Spanf^(^), /̂̂  is a minimal infocomplete observable, and 
the statement of the theorem is proved. Otherwise, there exists at least an observable E = {/} with « ^ 2 linearly independent effects. If this is the 
only observable, again the theorem is proved. Otherwise, take a new binary observable IJ = {x,y} from the set of available ones (you can take 
different binary observables out of a given observable with more than two outcomes by summing up effects to yes-no observables). If x £ Spar^(E) 
discard it. If x ^ Span£(E), then necessarily also j ' ^ Span£(E) [since if there exists coefficients .̂  such that j ' = Y.iKk, then x = X,(l ^ K)h]-
Now, consider the observable 

E' = { i j ; , i ( / i+x) , i /2 , . . . , / „} 

(which operationally corresponds to the random choice between the observables E and li with probability j , and with the events corresponding 
to X and /i made indistinguishable). This new observable has now |E| = « + 1 linearly independent effects (since y is linearly independent on the 
/, and one has j ' = X"=i li^x = X"=2̂ i + l̂ ^^ ) - ^Y iterating the above procedure we reach |E| = dim(^£), and we have so realized an apparatus 
that measures a minimal informationally complete observable. • 

' An algebra of maps over a Banach space can always be made itself a Banach space, also satisfying the bound \\.!Moji/\\ <^ \\.!M\\\\ji/\\ defining a 
Banach algebra. This is true for both the real and the complex cases. 
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faithful states, dynamical independence agrees only with the quantum tensor product .̂ In Ref [6] it is shown how the 
sole dynamical independence implies the impossibility of istantaneous signaling: the no-signaling condition is crucial 
for experimental control. 

In the following, when dealing with more than one independent system, we will denote local transformations as 
ordered strings of transformations as si ,SS,^£,... := ^(^) o ^ P ) o'^P) o .... For effects one has the locality rule 
([-ê leflf, [<̂ eff) £ \{^•, '^)]eS- The notion of independent systems now entails the notion of local state—the equivalent 
of partial trace in Quantum Mechanics. For two independent systems in a joint state Q, we define the local state Q| i 
(and similarly QI2) as the probability rule Q | i ( ^ ) = Q ( ^ , J^) of the joint state Q with a local transformation ^ 
acting only on system 1 and with all other systems untouched. 

4. THE C*-ALGEBRA OF TRANSFORMATIONS 

Now that we have a real algebra of generalized transformations and a hnear space of generalized effects we want to 
introduce a positive bihnear form over them, by which we will be able to introduce a scalar product via the GNS 
construction [4]. The role of such bilinear form will be played by a faithful state. 

We say that a state O of a bipartite system is dynamically faithful for system 1 when for every transformation 
s^ the map s^ ^^ {s^, J^)0 is one-to-one, namely V ^ G T R {S^, J ^ ) 0 = 0 •^=> s^ = 0. This means that for every 
bipartite effect ^ one has 0 ( ^ o ( ^ , j^)) = 0 •<=^ ^ = 0. On the other hand, we will call a state O of a bipartite 
system preparationally faithful for system 1 if every joint bipartite state W can be achieved by a suitable local 
transformation .9^) on system I occurring with nonzero probability, i. e. P̂ = {.9'>^, J^)0, with .9^) e T+, T+ denoting 
the positive cone generated by transformations. Clearly a bipartite state O that is preparationally faithful is also locally 
preparationally faithful, namely every local state \j/ of system 2 can be achieved by a suitable local transformation .9^ 
on system I. 

In Postulate 2 we also use the notion of symmetric joint state. This is simply defined as a joint state of two identical 
systems such that for any couple of effects ^ and ^ one has 0 ( ^ ^ = 0 ( ^ ^ . Clearly, for a symmetrical state 
the notions of dynamical and preparational faithfulness hold for both systems 1 and 2. 

For a faithful bipartite state O, the transposed transformation T* ( ^ ) of the transformation ^ is the generalized 
transformation which when applied to the second component system gives the same conditioned state and with 
the same probability as the transformation ^ operating on the first system, namely ( ^ , J^)0 = (J^, T 4 ) ( ^ ) ) 0 or, 
equivalently 0 ( ^ o .s!//^) = 0(^,;g^o T^{.S!/)) V^,;g^ e ^ . Clearly the transposed is unique, due to injectivity 
of the map ^ ^^ ( ^ , J^)0, and it is easy to check the axioms of transposition {x^{£/ -\ SS) = x^{si) + x^{SS), 
T4, (T4, (^) ) = si, x^{si om) = x^{3g) o x,s,{s/)) and that x,s,{^) = J. 

The main ingredient of a GNS construction for representing transformations would be a positive form 9 over 
transformations based on a notion of adjoint si -^ si^ by which one can construct a scalar product as {s/\£^) := 
(pisi"^ om) in terms of which we have {si\'tf o^) = ((^'^ o si\m) = (p{j^^o'^o^) = (piC^U j ^ ) ^ o^)7 We 
can extract from O a positive bihnear form over *PR (notice that the bilinear form O is actually defined on effects) 
using its Jordan decomposition in terms of its absolute value |0 | := 0 + - 0_ . Indeed, the absolute value can be 
defined thanks to the fact that O is real symmetric, whence it can be diagonalized over ^ R in the finite dimensional 
case. Upon denoting by .^± the orthogonal projectors over the hnear space corresponding to positive and negative 
eigenvalues, respectively, ^ one has | 0 | ( ^ , ^ ) = ^ig<bi^),M.), where g<s,{^) := {.9>+ - ^ - ) ( ^ ) . The map $$ 
is an involution, namely g j = J^. The fact that the state is also preparationally faithful implies that the bilinear 
form is strictly positive [1] (namely \^\{si_,sf) = 0 imphes that ^ = 0). The involution g^ over *PR corresponds 
to a generalized transformation J^ ,̂ e TR defined as ^ o Ĵ ,̂ := g^{^), whence it can be extended to generalized 
transformations TR v i a ^ o g 4 , ( ^ ) = g<s>{g<s>{M)°-^), corresponding to g<s>{s/) = J ^ o ^ o J ^ . Since J ^ = J^ the 
extension of g<s> to TR is composition-preserving, i. e. g<s>{.^ osi) = g^{M) o g^{s/). 

* As shown in Refs. [1, 6] the tensor product can be derived from the additional Postulate stating the local observability principle. 
^ It is not easy to devise a positive form over generalized transformations % such that the transposition plays the role of the adjoint on a real Hilbert 
space. Indeed, if we take (p as the local state of asymmetric faithful state ip = O^ = <l>|i we have 9(10 ( ^ ) ° ^ ) = 'l'(Tij)(£/),Tij)(^)),butthe fact 
that O is positive over the convex set X of physical transformations doesn't guarantee that its extension to generalized transformations $ is still 
positive. 
^ The existence of the orthogonal space decomposition corresponding to positive and negative eigenvalues is guaranteed for finite dimensions. 
For infinite dimensions O is just a symmetric form over a real Banach space— t̂he space ^ of generalized effects—and the existence of such 
decomposition needs to be proven. 
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The explicit form of J^^ can be obtained in terms of the basis {/,} for *PR reducing the bilinear symmetric form O 
over *PR to the canonical form 

^{f,Jj)=s,5,j, (1) 

where 5, = ±1 is the signature of the eigenvector/,. Then one has 

q^{s£) = .sl_o^^ = Y^^{fj,s£)fj. (2) 
j 

One can see that x^q^ = g<s>T<s>. In fact, due to the symmetry of O, T<I)( J ^ ) = J ^ , since for any couple of elements 
/ i , / / o f the basis 

o(Ao T*(ir*),//) = o(A,// o iT̂ .) = o(// o iT̂ ., A) = & = O(A O ^.^ji). (3) 

whence 

T4 , (g4 , (^ ) ) =T4,(jrc[, O ^ O jTci,) = T4,(jrc[,) O T 4 , ( ^ ) O T,s,{^,s,) 

= 5"* O T 4 , ( ^ ) O JTCI, = g<I,(T4,(^)). 

We now define the adjoint map ad* := 5<I)T<I) = T<s>g<s>. Here in the following we will also temporarily use the more 
compact notation .si/'^ := ad<i)(^), keeping in mind that the definition of the adjoint generally depends on the faithful 
state O with respect to which it is defined. Since g<s> is composition preserving whereas T* is a transposition, one has 
{^ o ^ ) 1 ' = ^ t o ^t^ Moreover, for ^ = 0 | i we have that ^{s^'^ oSg) = | 0 | ( T 4 ) ( ^ ) , T^{Sg)) is a positive bilinear 
form over transformations (strictly positive over effects, i. e. | 0 | ( ^ s^ = 0 => s^= 0 ), and can be used to define a 
scalar product over transformations as follows 

* (^ | i i ' ) * :=9(^ ' ' '0^1") = 0(54,T4,(^),T4,(ii')). (5) 

We can then verify that si'^ := g^x^{si) works as an adj oint for such scalar product, namely one has ^((^'^ osi\SS)^ = 
^{si\€ oSS)^. In this way g^ is identified as the complex conjugation, and as usual the adjoint^''' := g^x^{si) = 
T<s>g<s>{.s!/) is the composition of the transposition with the complex conjugation. Now, by taking complex hnear 
combinations of generalized transformations and defining g^{c.s!/) = c*g<^{£/) for c G C, we can extend the adjoint 
to complex hnear combinations of generalized transformations, whose linear space will be denoted by / l = T c, which 
is a complex algebra. On the other hand, we can trivially extend the real linear space of generahzed effects ^ R to 
a complex hnear space *Pc by taking complex linear combinations of generalized effects. The remaining setting up 
of the C*-algebra representation of A is just standard GNS construction, starting from the scalar product between 
transformations in Eq. (5). Symmetry and positivity imply the bounding [1] ^{si/\£^)^ < ll-s^lkll'^ll*. where we 
introduced the norm induced by the scalar product | |^ | | \ = ^{si/\si/)^. By taking the equivalence classes A/3 with 
respect to the zero-norm elements 3 C yi we thus obtain a complex pre-Hilbert space equipped with a symmetric 
scalar product, and, since the scalar product is strictly positive over generahzed effects, the elements ofA/3 are indeed 
the generahzed effects, i. e. A/3 c^ *Pc as hnear spaces. Being endowed with the scalar product (5) A/3 becomes 
a pre-Hilbert space, whose completion H ,̂ := A/3 under the norm induced by the scalar product is then a Hilbert 
space. In the following we will conveniently denote the equivalence class of transformations containing ^ in A/3 
by the Dirac vector itself | ^ ) $ G H ,̂. From the bounding for the scalar product it follows that the set 3 C yi of zero 
norm elements S" G /I is a left ideal (i. e. S" G 3, ^ G /I implies ^ o S" G 3), whence using our scalar product 
defined as in Eq. (5) we can represent elements of A (i. e. generahzed complex transformations, since A = %c) 
as operators over the pre-Hilbert space of effects *Pc- The product in A defines the action of A on the vectors in 
A/3, by associating to each element ^ G /I the linear operator n^{£/) defined on the dense domain A/3 C H ,̂ as 
n^{£/)\£^)^ = \si o SS)^. The fact that / l is a Banach algebra' also imphes that the domain of definition of K^{si) 
can be easily extended to the whole H 4, by continuity. Being now an operator algebra over a complex Hilbert space, 
A becomes a C*-algebra. We just need to introduce the norm on transformations as the respective operator norm over 
H^, namely H^H* := supugH4,,||u||4,<i ll-^^^ II*' and completion oiA under the norm topology will give a C *-algebra 

' Indeed norms introduced in Sect. 3 can be extended to the respective complex linear spaces, and the norm completion makes A. also a complex 
Banach algebra, as explained in the footnote 5. 
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(i. e. a complex Banach algebra satisfying the identity \\si/^ o£/\\ = | | ^ p ) , as it can be easily proved by standard 
techniques [1]. 

I want to emphasize that even though H^ ::; *Pc as linear spaces, the elements |^)<i) G H^ should be regarded 
as element of the dual space of *Pc, in the sense that the action of transformations over vectors l ^ ) * G H^ is 
from the left—as in the Schrodinger picture—instead of being from the right—as in the Heisenberg picture, e. 
g. ;r4,('^)K)4, = 1*^0^)4, =, or 4,(^|;r4,('^) = 4,('^''' o ^ | , as it follows from the identity (.:^|;r4,('^)K)4, = 
{i^Y^ osi/)^ = (•^t o ^1^)4 , . The Schrodinger picture is obtained thanks to the transposition in the definition of 
the scalar product 4,(,:̂  1^)4, = | 0 | ( T 4 , ( , ^ ) , T 4 , ( ^ ) ) . 

From the definition of the scalar product, and using the fact that the state O is also preparationally faithful according 
to Postulate 2, the Bom rule can be written in the GNS representation as (o{£f) = <s> (^^ \p)<s>, with representation of 
state p = T<i)(^^)/0(^^, .y) [1], .9'co denoting the transformation on system 2 corresponding to the local state a on 
system 1, namely co == 0(-, =^). Then, the representation of transformations is 

(0{mo£/) = <^{SS^\s^\p)<^ := <^{SS^\s^op)i^. (6) 

4.1. Connecting two faithful states 

Suppose that Q is a symmetric state which is faithful both preparationally and dynamically, and that O is another 
such kind of state. Then, there must exists an invertible generalized transformation ̂  in the positive cone T + generated 
by physical transformations, such that 

0 = ( J ? , J ^ ) Q . (7) 

In fact, since Q is preparationally faithful, there must exists a local physical transformation which transforms Q into 
any state with some probability. On the other hand, since Q is dynamically faithful, in order to have also O so, the 
correspondence between any other joint state and a local map apphed to O must be one-to-one, which is tme iff ^ is 
invertible. If the map ^ ^ Ms itself in the positive cone T+ generated by physical transformations, then the state is also 
preparationally faithful, and viceversa. Indeed, any pure joint state E must be written as E = ( ^ , J^)Q with ̂  G T + . 
Therefore E can also be obtained probabilistically from O as ( ^ , J^)0 using a transformation S^ ^ ,^,y,^-'^ e T+ 
belonging to the convex cone T+ generated by physical transformations. Finally, as regards symmetry, the state O is 
symmetric iff Ta(^) = ̂ , since 

0 ( ^ , i i ' ) = Q ( ^ o j ? , i i ' ) = Q ( i i ' , ^ o j ? ) = Q ( i i ' o T a ( J ? ) , ^ ) , 
o(^,ii')=o(ii',^) = Q(ii'oj?,^), \/<M,£/e1 *-̂ '' 

and using preparational faithfulness of Q one can see that the above identity holds true iff T a ( ^ ) = ̂  (we remind 
that two transformations ^ 1 and ^2 are equal iff (o{M o s^i) = (o{.gS o ̂ 2) Vco G 6 and V,^ G T ) . Notice now that 
Ta(^-M = ̂ " ^ since ̂  = T a ( ^ - i ) o Ta(^) = T a ( ^ - i ) o ^ . 

The transposed with respect to O is obtained as follows 

( ^ , j ^ ) ( j ? , j ^ ) Q = ( j ^ , T 4 , K ) ) ( j ? , J ^ ) Q = ( j ^ , T 4 , ( ^ ) o T a ( j ? ) ) Q (9) 

namely x^{£/) o Ta(^) = Ta(^) o Ta(^) , which means that 

T4,(^) = T a ( j ? " M ^ o j ? ) = j ? o T a ( ^ ) o j ? - i (10) 

The canonical basis of eigenvectors {/,} of the bilinear form O must satisfy the identities 

sj5,j = <i>if,Jjl 5,j = <i>igMi)Jj) = mAfjl (H) 

and upon multiplying by fj and summing over the index j one obtains fj o J ^ = Y.j^{fi,fj)fj, and since {/,} is a 
basis for *PR, one as the identity 

j£o^^ = J^<i>{j^Jj)fj, V ^ G ^ P R . (12) 
J 

For any couple of elements of the complete basis {/,} for*PR one has 

5,j = mf,Jj)=<P{f,o^^Jj)=Q{f,o^^o^Jj), (13) 
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and since {/,} is a basis for *PR, this corresponds to the identity 

ir4,o^oira,f=^, (14) 
where 

^o^a,f-=ll^i^Jj)fj^ V^G^PR. (15) 
J 

The definition of ̂ a,f generalizes that of J^^ in specifying the basis f := {fj} which is generally non canonical for Q. 
For 0 := {oj} canonical for Q one has simply J^Q = J ^ „ • Upon multiplying by fj and summing over the index j in 
Eq. (44) we obtain 

s.f, = J,<^{Afj)fj = J^^if, o ̂ Jj)fj =f,o^o ^a,f- (16) 
J J 

This corresponds to 
ir4, = ^oira,f, (17) 

which, in conjunction with Eq. (14), is a restatement of the involutive nature of J^*, i. e. J^^o J ^ = j ^ , corresponding 
also to the identities 

i r a , f 0 ^ o i r a , f = ^ " \ '^o^a^fO^ = ̂ ^l (18) 
Therefore, one also has 

^^ = ̂ o^a^f=^^lo^-\ (19) 
The complex conjugation obeys the symmetry T<I)( J ^ ) = J ^ which is needed for a proper definition of the adjoint. 
Indeed 

T4,(jrc[,) = j?oTa(jrc[,)oj?-i = j?ojra_fOj?oj?-i = j?ojra_f=jrc[,. (20) 
One has Ta{^a,f) = ^a,f, since 

nif,o^a,fJj) =J,£lif,JkMfkJj)=J^£lifjJkMfkJ,) 
k k (21) 

We now evaluate the adjoint 

ad4,(^) := g4,T4,(^) = JTCI, o J?o Ta(^) o j ? - i o JTCI, = ^a,f ° '^n('^) ° ^n,f, (22) 

and one has 
ad4, = ada:=(-)^ ^ i2h,f=ira, (23) 

namely if J^Q = .^^^ o J ^ . In such case we will also have 
^ - i = g a ( ^ ) = ̂ ^ (24) 

5. DYNAMICAL INDEPENDENCE AND TENSOR PRODUCT 

As already mentioned, our notion of dynamical independence—i. e. the possibility of performing local experiments— 
can be satisfied not only by the quantum tensor product, but also by the quantum direct sum. This is shown in detail 
in Ref [6]. Here I will show how Postulate 2— t̂he existence of dynamically and preparationally faithful states—in 
conjunction with dynamical independence, leads to the right dimension for the convex set of states of two independent 
identical systems according to the tensor product rule. 

The state-effect duality leads to the identity dim(*p) =dim(6) + 1,'° (we remind that one dimension is blocked by 
state normahzation). Then, the existence of a preparationally and dynamically faithful state guarantees that generalized 
transformations and generalized joint states are isomorphic as hnear spaces, whence dim(T) = dim(6 ^^) + 1, 6^^ 
denoting the set of bipartite states of two identical systems, each with set of states 6 . Finally, the GNS construction 
represents generalized transformations as operators over the Hilbert space of generalized effects, whence dim(T) = 
dim(*p)2, from which it follows that dim(6 ^2) + l = (dim(6) + 1)^. Therefore one has dim(*p^2j ^ (dim*p)2, and 
dimc(*P^2) = (dim*Pc)^ (since dimc*Pc = jdim^Pc = dim^Ps), whence ^3^^ = q3|2 ^^^ ^ x i ^ ^®2 j ^ ^ j ^ ^ ^ 
identities hold in Quantum Mechanics, as a consequence of the tensor product of complex Hilbert spaces. 

For convex sets £, one has dim(£) := dimSpan(£), where dim = dirr(j (if not otherwise stated, the convex sets are always considered real). 
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6. THE QUANTUM C*-ALGEBRA OF TRANSFORMATIONS 

In the following, for given fixed orthonormal basis {\j)} for H we will denote hy A* = Y.ijA*j\i){j\ the operator 
corresponding to the complex conjugated matrix of ^ = Y.ijAij\i){j\, and consistently A' = (A*)'^ will denote the 
transposed-matrix operator With the double ket we denote bipartite vectors \W)) G IK (g) IK, which, keeping the 
basis {\j)} as fixed, are in one-to-one correspondence with matrices as \W)) = Y.ij^ij\i) <?) \j). We will denote the 
generahzed transformation and the corresponding quantum hnear map by the same letter, and we will do so also 
for state and its corresponding quantum density operator Moreover, we will write composition of quantum maps as 
,^.s!/ as usual, instead of using the operational notation SS o si. In Quantum Mechanics physical transformations 
correspond to quantum operations (i. e. trace non-increasing completely positive (CP) maps), effects correspond 
to positive contractions, generalized transformations T R to differences of CP maps, and generalized effects ^ R to 
selfadjoint operators. In the following we will denote by P ^ the positive operator describing the effect of the quantum 
operation si. For example, we will write 

p(^)=TrK(p)] = Tr Y,AnpA\ =Tr[pP^], P ^ : = X ^ K - (25) 

We will also use the notation si'^ = Y^n^l '^n for the usual adjoint map of ^ = Y.n^n -Al, and s/' = Y.n^n -A* for 
the transposed map. 

I will now construct explicitly the C*-algebra Tc of c-generalized transformations for a general faithful symmetric 
quantum state O. I first consider the case of the canonical maximally entangled state Q, and then analyze the general 
case of faithful symmetric state. 

6.1. The maximally entangled state of a qudit 

The canonical maximally entangled state of a qudit 

Q = d-'\I)){{I\, (26) 

is faithful, both dynamically and preparationally. The fact that it is dynamically faithful is just the Choi-Jamiolowski 
representation of CP maps. On the other hand, any pure joint state d^"! \Sj) can be written as {S'S)I)d^"i |/)) with 
d^^Tr[S^S] = I, ,y oc S • S^ quantum operation (i. e. ^ G T+), whence Q is preparationally faithful. The state Q is 
also symmetric, since for any couple of generahzed effects one has 

Q ( ^ , ^ ) = T r K ® ^(O)] = ^ Tr[P^Pi] = i Tr[P^P^] = Q ( ^ , ^ ) . (27) 

The transposition TQ is just the customary transposition TQ = (•) ^ with respect to any fixed basis {| /)} such that Q has 
all probability amplitudes equal to d^"i. Indeed, it is easy to check that 

(^®^)( | / ) ) (( / | ) = (^®^0( | / ) ) ( ( / | ) - (28) 

In order to construct an eigenbasis for the Jordan form, consider the following selfadjoint operators 

Xki = j^{\k){l\ + \l){k\), Yu = ^{\k){l\-\l){k\), k<l, Zj=\l){l\. (29) 

One has 
Tx\XkiXkiii] = Ski'Siki + 5tt'5//' = 4i'5//', (30) 

since fork= I' >k' one has k' = 1 >k. Similarly we have Tr[7i/7i///] = 5^/ 5///, and 1r[ZkZy] = 5^/, and, moreover 

nxkiYk'i']=nziYk'i']=nziXk'i']=o. (31) 
Therefore, the following is a canonical basis for the Jordan form of O 

[Cj] = [Zo,Zi,...,Zj_i,Xoi,Xo2,...,Xo_j_i, 
-^12,-^13,- • • , - ^1 ,^ -1 , • • •Xd-2,d-l,Yoi,. . •,Yd^d-l] , 
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with Jordan form 
£liC„Cj) = Tr[C,C*] = 5,jSj, (33) 

Yki {0 !^k < I !^d-l) spanning the eigenspace with negative eigenvalue of the symmetric form Q. It follows that the 
transformation ga corresponds to the complex conjugation ga = {•)* with respect to the same fixed orthonormal basis 
{|/)} used for transposition. We can construct the Kraus form for the corresponding generahzed transformation J ^ Q , 
passing through the construction of the corresponding Choi-Jamiolowski operator 

\ J J J J 

which is just the unitary swap operator E, with eigenvectors 

E\Cj)) = \C*))=Sj\Cj)), 

corresponding to the Kraus form for the generalized transformation J^ 

^ = l^jCj-C •J-

J 

The GNS representation of transformations over effects is provided by the following scalar product 

(34) 

(35) 

(36) 

(37) 

where corresponding to the map ^ = Y.n^n -Al we define the operator J := Y.nAn 'S)A* such that J pT)) = |^(X))). 
Indeed, we can check the identities 

a ( ^ | ^ ) a : = Q ( ^ ^ ^ ' ) = 3Tr ZjAmAyyj 2jB„B„ 
m n 

|Tr[P^tP, d snW 

Explicitely, the GNS representation of transformation over effects is 

K ) =A\i)) = K(/))) = |p^t)), ^ K ) =5K(/))) = |^^(/))) = l^(P^t))). 

(38) 

(39) 

(40) 

For qubits the canonical Jordan basis, will be given by the set of four Pauli matrices CTQ = ^, Cx, Oy, Oz normahzed as 
Cj = -j^Oj, corresponding to the Jordan form 

il{C„Cj) = \Tx[a,a*] = 

1 0 0 0-
0 1 0 0 
0 0 - 1 0 
0 0 0 1 

•.= 8,jSj. (41) 

Here Oy spans the eigenspace with negative eigenvalue of Q. 

6.2. General faithful state 

According to subsection 4.1 the general form of a joint faithful state of two identical quantum systems with finite 
dimensional Hilbert space H can be always recast in the following way 

I 
(42) 

with Q given in Eq. (26), and .^ = Y.1F1 -F/ invertible CP map (not necessarily trace-non-increasing), and with 
^ ^ ^ also CP (normalization corresponds to Tr[X/i^/ î /] = d, d = dim(H)). Moreover, the state O is symmetric iff 
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( ^ )̂ = ^ \ corresponding to the operator identity E(i>E = O, it denoting the swap operator According to Eq. 
(10) the transposed with respect to O is given by 

To{£/) = ^£/'^-'^ (43) 

The canonical basis of eigenvectors {Cj} of the bihnear form O must satisfy the identity 

sjd,j = 0 (Q, Cj) = Tr[(Q ® Q) ^ |î /)) ((î /1] = T r [ C / ^ t (Q)]. (44) 
/ 

Upon multiplying by Cj and summing over the index j in Eq. (44) we obtain ' ' 

s,C, = X T r [ C / ^ t ( Q ) ] Q =. ^ ^ t ( Q ) (45) 
J 

where "^ := 'ZjTr[C/-]Cj. Identity (44) is equally satisfied by the set {Cj} with the same eigenvalue. Therefore, it is 
always possible to choose the operators Cj as selfadjoint, and ''^'^ = '^. It is also easy to check that "^^ = '^, since 

^ ® ^(|/))((/|) =XQ®Tri[C/®/ | / ) ) ( ( / | ] = J^Cj(g>Cj 

= XTr2[/®C/|/))((/|]®C, = ^®^( | / ) ) ( ( / | ) . "̂̂ ^̂  
J 

Using completeness of {Cj} and their self-adjointness, it is easy to see that 

^(X) =J,Tr[C/X]Cj = J,Tr[CjX%- = XTr[Cjx^]Q = X ^ (47) 
J J J 

namely 
^ = ( - ) ' , (48) 

and using Eq. (46) one can see that ZyCy (g)Cy = E and {Cj} are Hilbert-Schmidt orthonormal. Clearly "^^ = J^, 
• ^ ^ • ^ = ^ * , i. e. "^ = J^Q. According to (23) this will then guarantee that the adjoint will be independent on the 
faithful state O. The map ''^.^'^ acting onC, gives their complex conjugated, and since {C,} is a selfadjont basis of the 
real linear space of selfadjoint operators, ''^.^'^ is the complex conjugation over all selfadjoint operators, namely '̂  

iTci, = "rf-^"^ = J?*^. (49) 

The complex conjugation obeys the symmetty !$( J ^ ) = J ^ which is needed for a proper definition of the adjoint. 
Indeed 

T4,(jrc[,) = J^iTcD^J?"^ = ^'^^^-'^ = ^'^ = ^<s,. (50) 

Since, by definition, the map J^ is involutive, one has 

Jf = .^'rf.^'rf = .^.^* = J^Jf t (51) 

whence 
.^-^ = .^* = .^^. (52) 

Finally, the adjoint of a map si is just the usual adjoint, since 

g*T4,(^) = ^^.^.siK^-^^^ = '£.si^'£ = s^** = s^\ (53) 

or, equivalently, 
x<s,q<s,{.si) = ^{^,s,j^^,s,y^-'^ = ^'^^j^''^^^-'^ = '€si^'€ = ^ t (54) 

In Table 11 summarize the most relevant identities and definitions. 

' ' In the present quantum context the notation ^ t (x) corresponds to the Heisenberg picture S^ o JP, with X selfadjoint operator representing the 
generahzed effect ,^. 
'^ On the other hand, for a generic self-adjoint operator it is easy to check that 

3^^(A) = X f (Q,^)Q = J^TrlFfAFi'Ck'n = J^TrlF,^ AF,Ck']Ck = ^^UA). 
k H H 
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TABLE 1. Summary of most relevant identities and definitions 

1 object 

1 ^ 
^ 

1 "̂  
1 i?* 
1 M-) 
1 g<bi-) 1 
1 ad<i,(-) 
1 <s,(s/\^)<s, 

definition 

1 ^imnFii 
^IFVF] 

1 X;Tr[C/.]C, 
1 X;®(C;v)C; 

<I>K^T<I,(^)) 

identities | 

E(bE = (b 1 
.^ = .^\.^-^ = J^* = J^t 

'€ = {-f = '€'^ ='€\'€J^'€ = J^* 1 
^<i, = <̂ 'Ĵ f = J^'^' 1 

%^{Jl) = S^ J/J S^-^ 1 
5<i,(^) = ir4,^ir<t,,T<i,(ir<t,) = ir<t, | 

T<I,(5<I,(j2/)) = 5<I,(T<I,(J2/)) = jz/'f 1 

<i,K|^)<i, = iEz((î z|î B|î z)) 1 

Explicitely, the GNS representation is given by 

(55) 

where for any CP map si = 'ZiAj -A] one has A := Y.iAi <S>A* (we remind the normahzation Tr[X/i^/ î /] = d of state 
O in terms of the Kraus operators of ^). For trace-preserving ^ one would obtain the same scalar product as in Eq. 
(38), i. e. ^{£/\£^)^ := 1r[P^\P^\], however, since ^^^ = .^* is also trace preserving, the only possibility would be 
^ = U •U''^ unitary, and with the additional constraint U = U* coming from symmetry of O. 

6.3. The most general quantum scalar product 

We start now from the most general scalar product between two quantum transformations and show that it must be 
of the form (55). The most general form of scalar product between two operators^ and 5 in B(H) is 

cf>{A^B)=J^{Vj\A^B\Vj), J,{Vj\Vj) = l (56) 

where normalization corresponds to ^(7) = 1. For quantum transformations the most general scalar product can be 
constmcted upon regarding transformations as operators on B(H) (in infinite dimensions, more precisely, as operators 
on the Hilbert space of the Hilbert-Schmidt operators). Therefore, upon considering a complete set of operators {E,}, 
one has 

( ^ , ^ ) = Y^im{E,)\.si{E,))) = J^{{E,\m\E,)), Tr f X ^ ^ ' ) = 1' (57) 

which is exactly of the general form (55). Notice that the general form (55) corresponds to a state O that is mixed. 
being the convex combinationO= X,Tr[FTi7.]|i7.))((i7.|, withi^- •.= F,/JTr[FjF,] 

7. CONCLUSIONS 

In conclusion I want to emphasize that the fact that Postulates 1 and 2 imply a C*-algebra representation for 
transformations, and with the correct Bom-rule pairing and the correct dimensionality for the tensor-product structure 
of bipartite systems, is not sufficient to assert that the only possible theory derived from the postulates is Quantum 
Mechanics. Indeed, as for the general C*-algebras of operators on Hilbert spaces. Classical Mechanics is also included 
as special case, corresponding to Abehan A, and, more generally, a combination of both Quantum and Classical in a 
direct sum of irreducible algebra representations, such as in the presence of constant of motions and/or super-selection 
rules. Indeed preliminary analysis [7] show that more general theories can satisfy both postulates, such as the non-local 
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no-signaling probabilistic theories generally referred to as PR boxes [8]. This is the case, for example, of the model in 
Ref [9], which possesses a symmetric faithful state, however with dim(*PR) = 3, which caimotbe quantum. 

As regards additional postulates selecting Quantum Mechanics from the set of theories admitting C*-algebras 
representations, one may adopt Postulate 4 in Ref [1] concerning the possibility of achieving an informationally 
complete observable by means of a perfectly discriminating observable over system+ancilla. However, such postulate 
may look quite ad hoc, being essentially a restatement of existence of Bell measurements (Bell measurements are 
locally informationally complete for one system for almost every state-preparation of the other system). Alternative 
candidates for the quantum-extracting postulate are under study, considering what is specific of the quantum C *-
algebra, e. g. the fact that in the quantum case the C*-algebra of transformations A is a kind of multiplier algebra [10] 
oftheC*-algebraB(H). 

1 want to stress that the dimensionality identity in Sect. 5 concerning only identical independent systems could be 
generahzed to the case of different systems. This, however, will need to consider transformations between different 
systems. Thus, also the symmetry of the faithful state must be relaxed, upon considering a suitable transformation that 
maps the largest to the smallest system. Finally, the faithfulness condition itself may be relaxed, obtaining a generally 
unfaithful C*-algebra representation. Thus the C*-algebra representation of transformations will be just equivalent to 
the probabihstic framework endowed with the postulated existence of dynamically independent systems. A complete 
analysis of this direction will be the subject of a forthcoming publication [11]. 
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