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Abstract. We present a first feasible scheme for detecting the phase of a single mode of
radiation with ideal RMS sensitivityδφ ∼ n̄−1 versus the average number of photonsn̄. It
involves pairs of alternate independent homodyne measurements of two conjugated quadratures
on a weakly squeezed state at the input. Nonunit quantum efficiencyη of photodetectors degrades
phase sensitivity leading to a power lawδφ ∼ n̄−γ (η), with γ increasing versusη.

In phase-sensing interferometers minute variations of environmental parameters are detected
through changes in the phase shift of a light beam relative to a local oscillator (LO). The
back-action effect of radiation pressure on the measured parameter poses the problem of
optimizing phase sensitivity for a given average number of photonsn̄ [1, 2]. In a shot-noise
limited homodyne interferometer that uses coherent states, the root-mean-square (RMS)
phase errorδφ is proportional ton̄−1/2. Sensitivity can be improved up toδφ ∼ n̄−1 using
squeezed states [1–3]. Such a power law, however, only holds in a small neighbourhood
of a fixed working point that should be pursued by a feedback, whereas any sizeable phase
shift would greatly degrade sensitivity. Moreover, nonideal quantum efficiencyη < 1 of
photodetectors leads again to shot noise forn̄ > η/[8(1 − η)].

Strictly speaking, homodyne based interferometers do not provide a proper phase
detection, because the output photocurrent from the homodyne is proportional to asingle
quadrature of the field, saŷaϕ = 1

2(ae−iϕ + a†eiϕ), with a denoting the annihilator of
the field mode andϕ the tunable phase of the LO. Upon dividingâφ by the input field
amplitude |〈a〉| (which should be known in advance) one has a knowledge of the phase
shift φ only in an average sense, i.e.〈x̂φ〉 = |〈a〉| cos(φ − ϕ), but a single outcomex of
âφ may still correspond to an unreal phase whenx > |〈a〉|. Moreover,φ turns out to be
defined in aπ -window, instead of a 2π one. For these reasons a scheme to detect the phase
of one field mode should ultimately correspond to measuring the polar angle betweentwo
output (reduced) photocurrents, sayI1 andI2 [4]. The outcomes of the detector are points
distributed in the complex planeα ≡ I1 + iI2 ≡ ρeiφ , and the phase probability distribution
p(φ) is just the marginal one of the probabilityH(α, ᾱ) of the complex currentα, namely

p(φ) =
∫ ∞

0
ρ dρH(ρeiφ, ρe−iφ). (1)
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We are now faced with the problem of optimizing the phase sensitivityδφ for such two-
current schemes. At the purely abstract level, the problem of optimizingδφ versusn̄ has
been addressed in general terms in the framework of quantum estimation theory [5]. Shapiro
et al [6] adopted the reciprocal peak likelihood as a measure of sensitivity, and found that the
ultimate quantum limit goes asδφ ∼ n̄−2. However, on the basis of numerical simulations
Lane et al [7] have shown that the reciprocal peak likelihood is not an actual measure of
phase sensitivity, and in [8] pathologies in this definition ofδφ have been found. In [9] the
customary RMS error has been adopted forδφ, and the ultimate quantum limit has been
obtained†:

δφ ' 1.36

n̄
. (2)

However, there is no known two-current scheme which achieves the ideal limit (2), and
the optimal RMS sensitivity which ideally could be gained by an actual apparatus (double
homodyne or heterodyne [10]) isδφ ∼ n̄−2/3 [9], in between the shot noise levelδφ ∼ n̄−1/2

and the ideal bound (2). Thus, the current state of the art on phase sensitivity is represented
by the ultimate limit (2), but with no available scheme for achieving it.

The aim of this paper is to provide a concrete detection scheme for reaching the ideal
limit (2). We will show that, except for a constant factor, the power law (2) can actually
be achieved by means of pairs of independent homodyne measurements of two conjugated
quadratures on a (stable) weakly squeezed state at the input. We will also analyse the
effect of nonunit quantum efficiencyη < 1 at photodetectors, and show that, in contrast to
the single-measurement scheme, sensitivity is not unstable versusη, with slow degradation
corresponding to a power lawδφ ∼ n̄−γ (η), with γ increasing as a function ofη.

For heterodyne or double homodyne detectors the probability densityH(α, ᾱ) in
equation (1) is just theQ-function of the field density matrix̂ρ [9, 11]

Q(α, ᾱ) = 1

π
〈α|ρ̂|α〉. (3)

In this case the sensitivityδφ ∼ n̄−2/3 can be obtained for optimal states which are almost
indistinguishable from weakly squeezed states [9]. This phase noise is mainly related to
the additional 3dB noise suffered by the distributionH(α, ᾱ), which is due to the fact that
these schemes achieve ajoint measurementof two noncommuting quadratures [12]. For
this reason one is led to consider a scheme ofindependentmeasurements of conjugated
quadratures, and this will be contemplated in the following.

Generalizing the previous framework, one can think of theQ-function as just a particular
case of thes-ordering Wigner function, namely

Ws(α, ᾱ) =
∫

d2λ

π2
eαλ̄−ᾱλ Tr(ρ̂eλa†−λ̄a+ 1

2 s|λ|2). (4)

For s = −1 one obtains theQ-function, which is the probability distribution for antinormally
ordered fields;s = 0 and s = 1 correspond to symmetrical and normal orderings,
respectively. From equation (4) one can see that lower negatives produce smoother
functionsWs : thus, in order to improve sensitivityδφ, a sharper Wigner function (s > −1)
should be considered instead of theQ-function. However, only fors 6 −1 the Wigner

† The bound in (2) has been obtained numerically, and is actually given by

δφ = 1.36± 0.01

n̄1.00±0.01
.
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function is non-negative for all stateŝρ, whereas by definition the functionH is a genuine
experimental probability in all cases. Thus, fors > −1 there remains only the possibility
that H(α, ᾱ) coincides withWs(α, ᾱ) for some special states: fors 6 0 this is true for
squeezed states [13]. In fact, let us consider a squeezed state|β, r〉, with signal β and
squeezing parameterr both real positive. Fors 6 0 the Wigner function (4) is given by
the double Gaussian

Ws(α, ᾱ) = 1

2πσ1sσ2s

exp

[
− (Reα − β)2

2σ 2
1s

− (Im α)2

2σ 2
2s

]
(5)

where the variancesσ are thes-ordered second moments of the two conjugated quadratures
â0 and âπ/2, namely

σ 2
1s ≡ 〈: 1a2

0 :s〉 = 1
4(e2r − s) (6)

σ 2
2s ≡ 〈: 1a2

π/2 :s〉 = 1
4(e−2r − s). (7)

The sharpest distribution clearly corresponds tos = 0.
The scheme for detecting the Gaussian Wigner function (5) fors = 0 is based on

homodyne detection, but with the highly excited LO alternately switching between phases
ϕ = 0 andϕ = π/2. In this way each experimental event consists of a pair of independent
measurements of the conjugated quadraturesâ0 and âπ/2, with measurements successively
performed on the input field prepared again in the same state. This scheme is similar to the
optical homodyne tomography[14], where the Wigner function is recovered by an ensemble
of many repeated measurements of the quadraturesâϕ for different phasesϕ of the LO (in
current experiments up to 104–105 measurements can be performed within the stability time
of the source). In our case only two measurements at differentϕ are needed, because we
know in advance that the Wigner function is Gaussian. It is clear that the present scheme is
used to detect time-dependent phase shifts due to some perturbing force or change of any
environmental parameter (which is the actual motivation of any phase detection), so the pair
of measurements should be performed within a time delay much shorter than the typical
time scale of the perturbation. If we denote byx andy the outcomes of the measurements
of â0 and âπ/2, respectively, each event corresponds to a point in the complexα-plane
defined byα = x + iy. The probability distribution of the complex outcomes is given by

H(α, ᾱ) = p0(Reα)pπ/2(Im α), (8)

where pφ represents the probability distribution of the quadratureâφ . It is clear that
H(α, ᾱ) ≡ W0(α, ᾱ) in equation (5) for squeezed states|β, r〉, because each Gaussian
factor in the probability (5) is just a quadrature probability in equation (8). Hence, the
proposed scheme detects the Wigner functionW0(α, ᾱ) for Gaussian states (squeezed or
coherent).

Before addressing the problem of optimizing the phase sensitivity, let us consider the
case of nonunit quantum efficiency at photodetectors. A photodetector withη < 1 is
equivalent to an ideal detector preceded by a beam splitter with transmissivityη. With this
scheme in mind it is simple to check that the probability distributionpη(I ) of the output
photocurrent of a homodyne detector becomes the following Gaussian convolution of the
ideal probabilityp1(I ):

pη(I ) =
∫ ∞

−∞
dx p1(x)

exp
[−2η(I − x)2/(1 − η)

]
√

π(1 − η)/2η
. (9)

The output probability distribution of the whole apparatus is thus given by

Hη(α, ᾱ) =
∫

d2β W0(β, β̄)
exp

[−2η|α − β|2/(1 − η)
]

π(1 − η)/2η
(10)
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and coincides with the Wigner quasiprobability for negatives, namely

Hη(α, ᾱ) = W1−η−1(α, ᾱ). (11)

Therefore, the Wigner function for negatives coincides with the probability distribution
of the detector that has nonunit quantum efficiency at the photodetectorη = 1/(1 − s)

[15]. Notice thatη = 1
2 (s = −1) leads to theQ-function, which, as already seen, can

also be measured by means of heterodyne or double homodyne schemes with unit quantum
efficiency: the effective quantum efficiencyη = 1

2 corresponds to the additional 3 dB noise
due to jointly measuring the pair of conjugated quadratures [12].

Now we address the problem of phase optimization for our scheme. Fors 6 0 the
marginal phase distribution of the Wigner function (5) is given by

ps(φ) = 1

4πσ1sσ2sκ(φ)
exp

(
− n̄ − sinh2 r

2σ 2
1s

) {
1 + eλ(φ)

√
πλ(φ)

[
1 + erf

(√
λ(φ)

)]}
(12)

where

λ(φ) = (n̄ − sinh2 r)σ 2
2s

2σ 2
1s(σ

2
2s + σ 2

1s tan2 φ)
(13)

κ(φ) = 1

2

[
cos2 φ

σ 2
1s

+ sin2 φ

σ 2
2s

]
(14)

and erf(x) denotes the error function

erf(x) = 2√
π

∫ x

0
dt e−t2

. (15)

We evaluate the RMS phase sensitivity in the [−π, π ] window, namely

δφs =
[ ∫ π

−π

dφ φ2ps(φ)

]1/2

. (16)

The phase sensitivity is optimized numerically by varying the fraction of squeezing photons
n̄sq = sinh2 r at fixed total average photon numbern̄. The optimalδφ versusn̄ is plotted in
figure 1 for variousη. In figure 2 the optimal fraction̄nsq/n̄ of squeezing photons is given.
For all negatives the phase sensitivity obeys the power law

δφ ∼ n̄−γ (η) (17)

where the exponentγ versusη is plotted in figure 3. One can notice that for decreasingη

there is a degradation of sensitivity, and the exponentγ increases as a function ofη (roughly
one hasγ ' 1−η

√
1 − η in the considered range). Only a few per cent of squeezing photons

is needed for optimal sensitivity, and fewer squeezing photons are required if the detectors
are less efficient. (Physically a less efficient detector is more sensitive to the signal than to
the squeezing photons.) The cases = −1 corresponds to the result already obtained in [9]
for a heterodyne or double homodyne detector. The best sensitivity is obviously attained
for unit quantum efficiency (η = 1, s = 0). In this case the power law is explicitly given
by

δφ ' 2.72

n̄
. (18)

Equation (18) differs from the ultimate RMS sensitivity (2) by just a factor of two, and
another factor of two must be accounted ifδφ is written in terms of the total number of
photonsnT = 2n̄ per experimental point.
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Figure 1. Optimized phase sensitivity versusn̄ for various quantum efficienciesη.

Figure 2. Fraction of squeezing photonsn̄sq/n̄ corresponding to optimal sensitivities in figure 1.

In conclusion, we have presented a feasible two-current detection scheme that achieves
ideal phase sensitivityδφ ∼ n̄−1. The scheme is based on pairs of independent homodyne
measurements of two conjugated quadratures. Within the limits of our numerical analysis
we have seen that a nonunit quantum efficiency slightly degrades the exponent of the power
law: this is relevant from the experimental point of view, especially if one considers that
the best sensitivity of conventional homodyne interferometric schemes is unstable versusη

(any value ofη < 1 leads to shot noise for sufficiently largen̄). The present scheme is
much more efficient than the heterodyne or double homodyne schemes considered in [9, 10],
which have a halved effective quantum efficiency related to the additional 3dB noise due
to the joint measurement of the two quadratures. With respect to the heterodyne/double
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Figure 3. Exponent γ of phase sensitivityδφ ∼ n̄−γ versus quantum efficiency of
photodetectors.

homodyne schemes, the one proposed here needs twice the number of measurements on
the same state: however, for sufficiently high numbers of photons the improved sensitivity
versusn̄ makes the present scheme the most convenient one.
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