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Abstract. – We consider the problem of broadcasting arbitrary states of radiation modes from
N to M > N copies by a map that preserves the average value of the field and optimally reduces
the total noise in conjugate variables. For N ≥ 2 the broadcasting can be achieved perfectly,
and for sufficiently noisy input states one can even purify the state while broadcasting—the so-
called superbroadcasting. For purification (i.e. M ≤ N), the reduction of noise is independent
of M . Similar results are proved for broadcasting with phase-conjugation. All the optimal
maps can be implemented by linear optics and linear amplification.

The impossibility of exact quantum cloning, namely copying the unknown state of a quan-
tum system to a larger number of copies [1], has stimulated the search for quantum devices that
can emulate cloning with the highest possible fidelity. After the simplest case of qubits [2–4]
many optimal cloners have been found, for general finite-dimensional systems [5], restricted
sets of input states [6, 7], and infinite-dimensional systems such as harmonic oscillators—the
so-called continuous variables cloners [8]. However, when considering mixed states, a less
stringent type of cloning transformation can be used—so-called broadcasting—in which the
output copies are in a globally correlated state whose local reduced states are identical to
the input states. This issue has been considered in ref. [9], where it has been shown that
broadcasting a single copy from a noncommuting set of density matrices is always impossible.
Later, this result has been considered in the literature as the generalization of the no-cloning
theorem to mixed states. However, more recently, for qubits an effect called superbroadcast-
ing [10] has been discovered, which consists in the possibility of broadcasting the state while
even increasing the purity of the local state, for at least N ≥ 4 input copies, and for suffi-
ciently short input Bloch vector (and even for N = 3 input copies for phase-covariant instead
of universal covariant broadcasting [11]).

In the present letter, we study the broadcasting of conjugate quantum variables xa = a+a†

2

and ya = a−a†

2i , where a and a† are the customary annihilation and creation operators for the
harmonic oscillator (or single-mode radiation field), i.e. [a, a†] = 1. We look for the map that
from N uncorrelated states with the same complex amplitude provides M > N states, while
preserving the amplitude and optimally reducing the total noise in conjugate quadratures.
We derive a bound from the quantum limits on noise in linear amplifiers that can be easily
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achieved experimentally. We will show indeed that such a bound cannot be overcome even for
general nonlinear transformations (i.e. allowing for arbitrary quantum operations). Explicit
examples will be given for displaced thermal states, which are equivalent to coherent states
that have suffered Gaussian noise.

As we will see, superbroadcasting is possible for continuous variables for N ≥ 2, namely
one can produce a larger number M of purified copies at the output, locally on each use,
and with the same amplitude of the input copies N . For displaced thermal states, e.g., N
to M superbroadcasting can be achieved for input thermal photon number nin > M−N

M(N−1) .
For purification (i.e. M ≤ N), quite surprisingly the purification rate is nout/nin = N−1,
independently of M . We mention that the particular case of 2 → 1 purification for noisy
coherent states has been reported in ref. [12]. We will also consider the optimal broadcasting
with phase-conjugate output, showing analogous effects.

From N uncorrelated modes a0, a1, ..., aN−1 with

〈ai〉 = α , ∆x2
ai

+∆y2
ai

= γi , (1)

a broadcasting transformation provides M > N (generally correlated) modes b0, b1, ..., bM−1,
with the same complex amplitude and noise Γ, i.e.

〈bi〉 = α , ∆x2
bi

+∆y2
bi

= Γ , (2)

and we are looking for the minimal Γ. This can be obtained by applying a fundamental
theorem for linear amplifiers: the sum of the uncertainties of conjugate quadratures of an
amplified mode with (power) gain G is bounded as follows [14]

∆X2
B +∆Y 2

B ≥ G(∆X2
A +∆Y 2

A) +
|G ∓ 1|

2
, (3)

where the upper (lower) sign holds for phase-preserving (phase-conjugating) amplifiers, and
A and B denote the input and the amplified mode, respectively. In fact, our transformation
can be seen as a phase-preserving amplification from mode A = 1√

N

∑N−1
i=0 ai to mode B =

1√
M

∑M−1
i=0 bi with gain G = M

N , and hence eq. (3) should hold. Notice that generally for any
mode c one has

∆x2
c +∆y2

c =
1
2

+ 〈c†c〉 − |〈c〉|2 . (4)

In the present case, since modes ai are uncorrelated, from eqs. (1) and (4) we have 〈A†A〉 =
γ + N |α|2 − 1

2 , with γ = 1
N

∑N−1
i=0 γi, whereas from eqs. (2) and (4)

〈B†B〉 =
1
M

M−1
∑

i,j=0

〈b†i bj〉 ≤
1
M

M−1
∑

i,j=0

√

〈b†i bi〉〈b†jbj〉 = M

(

Γ+ |α|2 − 1
2

)

. (5)

From eqs. (3), (4) we obtain the following bound for the noise Γ:

Γ− 1
2
≥ 1

N

(

γ − 1
2

)

+
1
N

− 1
M

. (6)

Notice that γ,Γ ≥ 1
2 , due to the Heisenberg uncertainty relations. A similar derivation gives

a bound for purification, where N > M . In such a case G < 1, and one obtains

Γ− 1
2
≥ 1

N

(

γ − 1
2

)

. (7)
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We will see that the M output purified copies are, however, correlated.
From the bound on phase-conjugating amplifiers (3), similarly it follows

Γ− 1
2
≥ 1

N

(

γ +
1
2

)

, (8)

for phase-conjugating broadcasting (and purification). The bound (8) is independent of the
number of output copies, and corresponds to (6) for broadcasting in the limit M → ∞.

The bound (6) for broadcasting can be achieved by the following experimental setup. By
means of a N -splitter the signal is concentrated in one mode, whereas the other N − 1 modes
are discarded. The mode is then amplified by a phase-insensitive amplifier with power gain
G = M

N . Finally, the amplified mode is mixed in a M -splitter with M − 1 vacuum modes. In
the concentration stage the N modes with amplitude 〈a〉 = α and noise ∆x2+∆y2 = γi are re-
duced to a single mode with amplitude

√
Nα and noise γ. The amplification stage gives a mode

with amplitude
√

Mα and noise γ′ = γM
N + M

2N − 1
2 . Finally, the distribution stage gives M

modes, with amplitude α and noise Γ = 1
M

(

γ′ + M−1
2

)

each. We notice that the linear ampli-
fier can be replaced by a beam-splitter, heterodyne detection and feed-forward, as in ref. [15].

The condition for superbroadcasting is given by Γ < γ, namely γ − 1
2 ≥ M−N

M(N−1) , which
can be true for any N > 1, and up to M ≤ ∞. Consider, for example, the case of N displaced
thermal states D(α)ρn̄D†(α), where

ρn̄ =
1

n̄ + 1

(

n̄

n̄ + 1

)a†a

, (9)

and n̄ denotes the thermal photon number. The output state is given by D(α)⊗MλD†(α)⊗M ,
with

λ =
∫

Md2γ

πn̄′ |γ〉〈γ|⊗Me−
M|γ|2

n̄′ , (10)

where n̄′ = M(n̄+1)
N − 1. Such a state is permutation-invariant and separable, with displaced

thermal state at each use, with thermal photon number

n̄′′ =
n̄′

M
=

n̄

N
+

M − N

MN
. (11)

The superbroadcasting condition (output purity higher than the input one), is equivalent to
require smaller thermal photon number at the output than at the input, namely n̄ ≥ M−N

M(N−1) .
In fact, γ = n̄ + 1

2 and Γ = n̄′′ + 1
2 . Notice that for n̄ = 0 one has N coherent states at the

input, and n̄′′ = M−N
MN , namely one finds the optimal cloning for coherent states of ref. [13].

In fig. 1 we sketch the scheme for optimal 2 to 3 broadcasting. The superbroadcasting effect
arises for n̄ > 1

3 .
For achieving the optimal purification for any M ≤ N , one simply uses an N -splitter which

concentrates the signal in one mode and discards the other N −1 modes. Then by N -splitting
with N −1 vacuum modes, one obtains N purified signals (although correlated), with equality
in eq. (7).

The bound for phase-conjugating broadcasting and purification (8) can be obtained by
N -splitting, heterodyne measurement on one of the modes, and preparation of M coherent
states with amplitude α = α∗

o√
N

, where αo denotes the outcome of the measurement.
We would like to stress that the bounds (6), (7), and (8) hold for any state and relies

on the theorem of the added noise in linear amplifiers, namely only linear transformations of
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Fig. 1 – Experimental scheme for optimal superbroadcasting from 2 to 3 copies. The schemes makes
use of a beam splitter, a phase-insensitive amplifier and a tritter (i.e. two suitably balanced beam
splitters). The output copies carry the same signal as the input, and are locally less noisy, the noise
being confined into the correlations between them.

modes are considered. Hence, in principle, these bounds might be violated when considering
a restricted set of states and allowing for more exotic and nonlinear transformations.

In the following we give a rigorous proof that these bounds indeed cannot be overcome
by any quantum transformation. Let us consider a generic state Ξα of N uncorrelated modes
with noise γi, and 〈ai〉 = α for all modes. Then, Ξα can be written as D(α)⊗NΞ0D†(α)⊗N ,
where D(α) = exp[αa† − α∗a] denotes the displacement operator and Ξ0 = ⊗N−1

i=0 ξi is the
tensor product of N states, each with zero amplitude (i.e., for a single-mode radiation field,
zero average value of the field) and noise γi. We look for a broadcasting map B that preserves
the unknown amplitude on each copy

Tr[bi B(D(α)⊗NΞ0D
†(α)⊗N ] = α , (12)

for all i ∈ [0,M − 1] and complex α, such that each copy has minimal noise Γ, where, using
eq. (4),

Γ =
1
2

+ Tr[b†i bi B(D(α)⊗NΞ0D
†(α)⊗N )] − |α|2 . (13)

The optimal broadcasting map can be searched among covariant maps B that satisfy for all
σ and α(1)

B(D(α)⊗NσD†(α)⊗N ) = D(α)⊗MB(σ)D†(α)⊗M .

It is useful to consider the Choi-Jamio&lkowski bijective correspondence of completely positive
(CP) maps B from Hin to Hout and positive operators RB acting on Hout ⊗ Hin, which is

(1)In fact, for any map B, one can construct a covariant one B̃ by averaging over the group, and still satisfying
eqs. (12) and (13). Actually, being the group noncompact, a limit procedure has to be taken, e.g.

B̃(σ) = lim
∆→∞

∫

d2α

π∆2
e
− |α|2

∆2 D†(α)⊗MB[D(α)⊗NσD†(α)⊗N ]D(α)⊗M .
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given by the following relations

RB = B ⊗ I (|Ω〉〈Ω|) ,

B(ρ) = Trin[(Iout ⊗ ρτ )RB] ,
(14)

where |Ω〉 =
∑∞

n=0 |ψn〉|ψn〉 is a maximally entangled vector of H⊗2
in , and Xτ denotes trans-

position of X in the basis |ψn〉. In terms of the operator RB the covariance property can be
written as

[RB,D(α)⊗M ⊗ D(α∗)⊗N ] = 0 , ∀α ∈ C , (15)

and conditions (12) and (13) are equivalent to

Tr[bi ⊗ Ξτ
0RB] = 0 , (16)

Γ =
1
2

+ Tr[b†i bi ⊗ Ξτ
0RB] . (17)

In order to deal with the covariance constraint we introduce the multisplitter operators Ua

and Ub, that satisfy

UaakU†
a =

1√
N

N−1
∑

l=0

e
2πikl

N al , UbbkU†
b =

1√
M

M−1
∑

l=0

e
2πikl

M bl , (18)

and the squeezing transformation Sa0b0 defined by

Sa0b0a
†
0S

†
a0b0

= µa†
0 − νb0 , Sa0b0b0S

†
a0b0

= µb0 − νa†
0 , (19)

with µ =
√

M
(M−N) and ν =

√

N
M−N . Condition (15) then becomes

[S†
a0b0

(U†
b ⊗ U†

a)RB(Ub ⊗ Ua)Sa0b0 ,Db0(α)] = 0 . (20)

Hence, upon introducing an operator B of modes b1, ..., bM−1, a0, ..., aN−1, the operator RB

can be written in the form

RB = (Ub ⊗ Ua)Sa0b0(Ib0 ⊗ B)S†
a0b0

(U†
b ⊗ U†

a). (21)

Notice that RB ≥ 0 is equivalent to B ≥ 0. The further condition that B is trace-preserving
in terms of RB becomes Trb[RB] = Ia, where b and a denotes collectively all output and input
modes. This condition is verified iff

Trb\b0,a0 [B] = ν2Ia\a0 , (22)

where a\ai denote all the input modes except ai, and similarly for b\bi.
Consider now the expectation value of the total number of photons of the M clones W =

Tr[
∑M−1

l=0 b†l blB(Ξ0)]. Since the multisplitter preserves the total number of photons we have

W = Tr

[(

M−1
∑

l=0

b†l bl ⊗ U†
aΞ

τ
0Ua

)

Sa0b0(Ib0 ⊗ B)S†
a0b0

]

≥ Tr
[(

b†0b0 ⊗ U†
aΞ

τ
0Ua

)

Sa0b0(Ib0 ⊗ B)S†
a0b0

]

. (23)
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Using the relation which holds for any state σ

Trb0 [S
†
a0b0

(b†0b0 ⊗ σ)Sa0b0 ] =
1
ν4

(a†
0a0 ⊗ Tra0 [σ] + µ2Ia0 ⊗ Tra0 [a

†
0a0σ] + Ia0 ⊗ Tra0 [σ]) , (24)

along with condition (22), continuing from eq. (23), we obtain

W =
µ2Tr[a†

0a0 U†
aΞτ

0Ua] + 1
ν2

=
µ2 1

N Tr[
∑N−1

i,j=0 a†
iaj Ξτ

0 ] + 1
ν2

=
M

N

(

γ − 1
2

)

+
M − N

N
, (25)

which, from eq. (17), allows one to recover the bound (6). With the choice B = ν2 |0〉〈0|b\b0 ⊗
|0〉〈0|a0 ⊗ Ia\a0 one can check that both the bound in eq. (25) is achieved and eq. (16) is satis-
fied. In fact, such a choice of B gives a map that produces M identical clones D(α)ρD†(α) with

ρ =
∫

d2α

π
e−

|α|2
2 ( 1

N − 2
M +1) {Tr[Ξ0D

†(α/N)⊗N ]D(α) .

The proof of the bound (7) for purification (for M < N(2)) can be obtained by analogous
derivation, where now µ =

√

N
N−M and ν =

√

M
N−M , while the trace-preserving condition

becomes Trb[B] = µ2Ia\a0 . The map corresponding to B = µ2 |0〉〈0|b ⊗ Ia\a0 achieves the
bound (7), and produces M purified copies D(α)ρD†(α) with

ρ =
∫

d2α

π
e−

|α|2
2 (1− 1

N ) {Tr[Ξ0D
†(α/N)]}N D(α) .

A covariant phase-conjugating broadcasting map C satisfies for all σ and α

C (D(α)⊗NσD†(α)⊗N ) = D∗(α)⊗MC (σ)Dτ (α)⊗M ,

which, in terms of RC , corresponds to [D(α)∗⊗(M+N), RC ] = 0. Introducing the beam-splitter
transformation

Ua0b0b0U
†
a0b0

= ηb0 + θa0 , Ua0b0a0U
†
a0b0

= −θb0 + ηa0 , (26)

with η =
√

M
M+N and θ =

√

N
M+N , the covariance relation gives RC of the form

RC = Ub ⊗ UaUa0b0(Ib0 ⊗ C)U†
a0b0

U†
b ⊗ U†

a , (27)

where C is an operator of modes b1, . . . , bM−1, a0, . . . , aN−1, with the trace-preserving con-
dition Trb\b0,a0 [C] = θ2Ia\a0 . The proof of the bound (8) is analogous to the case for the
broadcasting map, where one just replaces Ua0b0 with Sa0b0 . The bound can be achieved by

(2)The proof for the case M = N is technically slighty different, since the squeezing operator Sa0b0 is ill-defined
in this case. By introducing the EPR states |D(β)〉〉 =

∑∞
n=0(D(β)⊗I)|n〉|n〉, the covariance condition implies

RB = (Ub ⊗ Ua)

∫

d2γ

π
|D(γ)〉〉〈〈D(γ)|a0b0 ⊗∆a\a0,b\b0 (γ)(U†

b ⊗ U†
a),

while the trace-preserving constraint is given by
∫

d2γ Trb\b0 [∆a\a0,b\b0 (γ)] = πIa\a0 . Then, the bound is

proved as before, and is achieved for ∆a\a0,b\b0 (γ) = πδ2(γ)Ia\a0 ⊗ |0〉〈0|b\b0 .
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C = θ2 |0〉〈0|b\b0 ⊗ |0〉〈0|a0 ⊗ Ia\a0 , and the state of the clones are given by D∗(α)ρDτ (α),
with

ρ =
∫

d2α

π
e−

|α|2
2 (1+ 1

N ) {Tr[Ξ0D
†(α/N)]}N D(α) .

In conclusion, we showed the optimal N to M phase-preserving/phase conjugating broad-
casting and purification maps for continuous variables. For N ≥ 2, the superbroadcasting
can be achieved, namely M > N copies can be obtained along with a reduction of noise
in conjugate variables. Since the noise cannot be removed without violating the quantum
data processing theorem, the price to pay for having higher purity at the output is that the
copies are correlated. Essentially noise is moved from local states to their correlations, and
the superbroadcasting channel that we presented does this optimally. All the optimal maps
can be easily implemented by linear optics and linear amplification (or beam-splitting and
feed-forward). Superbroadcasting is relevant for foundations, opening new perspectives in the
understanding of correlations and their interplay with noise, and may be also promising from
a practical point of view, for communication tasks in the presence of noise.
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