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We present the optimal estimation of an unknown squeezing transformation of the radiation field. The
optimal estimation is unbiased and is obtained by properly considering the degeneracy of the squeezing
operator. For coherent input states, the root-mean square of the estimation scales as !2#n̄"−1 versus the average
photon number n̄, while it can be improved to !2n̄"−1 by using displaced squeezed states.
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I. INTRODUCTION

Squeezed states are characterized by a phase-dependent
redistribution of quantum fluctuations such that the disper-
sion in one of the two quadrature components of the field is
reduced below the level set by the symmetric distribution of
the vacuum state or a coherent state $1%. Such a property has
been used to raise the sensitivity beyond the standard quan-
tum limit $2,3% and to enhance interferometric $4% and ab-
sorption measurements $5%, along with optical imaging appli-
cations $3,6%.

Even though squeezed states have been studied exten-
sively during the last three decades, the attention to the prob-
lem of estimating an unknown squeezing transformation is
relatively recent, and very few results are known about it.
The first attempt to quantify the accuracy limits imposed by
quantum mechanics was presented in Ref. $7%, in the case of
squeezing in a fixed direction. Here, the squeezing transfor-
mations form a one-parameter group, and the estimation
problem is closely similar to the problem of phase estimation
$8,9% !for this reason, the name hyperbolic phase estimation
has been also used". The basic idea underlying the estimation
strategy is to find a measurement that projects the quantum
state on the vectors that are canonically conjugated via Fou-
rier transform to the eigenstates of the squeezing generator.
However, as we will show in this paper, the scheme of Ref.
$7% is not optimal and is biased: Neither the mean value nor
the most likely one in the probability distribution coincide
with the true value of the squeezing parameter.

More recently, the estimation of squeezing has been con-
sidered in connection with cloning $10%. In this case, the
unknown squeezing is estimated from a number of identical
copies of the same unknown squeezed state. However, this
approach does not work when only a single copy is available,

and the problem of the bias and the optimality of the estima-
tion is left open.

In this paper, we will present the optimal estimation of an
unknown squeezing transformation in a given direction, act-
ing on an arbitrary state of the radiation field. This problem
arises in the experimental situation where a degenerate para-
metric amplifier is pumped by a strong coherent field with a
fixed phase relation with the state to be amplified, and one is
interested in optimally characterizing the amplifier gain.

We will show that the optimal measurement is unbiased,
provided that one properly takes into account the degeneracy
of the squeezing operator. Due to such a degeneracy, the
Fourier transform of the eigenstates of the squeezing opera-
tor is not uniquely defined, and, in order to obtain the best
estimation strategy, one has to perform an optimization simi-
lar to that of phase estimation with degeneracy $9%. Accord-
ingly, the optimal estimation of squeezing depends on the
chosen initial state of the radiation field. Also, the optimiza-
tion performed here is analogous to that of Ref. $11% in the
case of estimation of rotations; namely, it properly takes into
account the equivalent representations of the group of pa-
rameters. In fact, the degeneracy of the squeezing operator
corresponds to the presence of equivalent representations of
the related one-parameter group.

We will derive our results in the framework of quantum
estimation theory $12,13%, upon defining optimality as the
minimization of the expected value of a given cost function,
which quantifies the deviation of the estimated parameter
from the true one. According to the minimax approach, the
optimal estimation strategy will be the one that minimizes
the maximum of the expected cost over all possible true
values of the unknown squeezing parameter. In analogy with
the class of cost functions introduced by Holevo $8,13% for
the problem of phase estimation, we introduce here a class of
cost functions including a large number of optimality crite-
ria, such as maximum likelihood, and maximum fidelity. We
will show that our estimation strategy is optimal according to
any function in such a class.

II. SQUEEZING TRANSFORMATIONS

In the following, we consider a single-mode radiation
field with bosonic operators a and a†, satisfying the canoni-
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cal commutation relations $a ,a†%=1. The squeezing operator
is defined as follows

S!r" = exp& r

2
!a†2 − a2"' , !1"

where we consider r as a real parameter. Given a pure state
(") of the radiation field, we want to find the optimal mea-
surement that allows one to estimate the parameter r in the
transformation (")→S!r"("). In the quadrature representa-
tion "!x"= *x ("), where (x) denotes the Dirac-normalized ei-
genvector of the quadrature operator X= !a+a†" /2, the effect
of squeezing on the wave function is given by "!x"
→e−r/2"!e−rx".

The squeezing operator can be written as S!r"=e−irK,
where K is the Hermitian operator K= i!a†2−a2" /2, that gen-
erates the one-parameter group of squeezing transformations.
The spectrum of the generator K is the whole real line, and
the eigenvalue equation reads

K(#,s) = #(#,s) , !2"

where #!R is the eigenvalue, and s is a degeneracy index
with two possible values ±1. The explicit expression of the
generalized eigenvectors of K in the quadrature representa-
tion is given by $14%

*x(#,s) =
1

#2$
(x(i#−1/2%!sx" , !3"

where %!x" is the Heaviside step function $%!x"=1 for x&0,
%!x"=0 for x'0%. The vectors (# ,s) are orthogonal in the
Dirac sense, namely *# ,r (( ,s)=)rs)!#−(", and provide the
resolution of the identity

+
−*

+*

d# +# = 1 , !4"

where +#=,s=±1(# ,s)*# ,s( is the projector onto the
eigenspace of K corresponding to the eigenvalue #. We re-
call that a direct measurement of the operator K is not a
trivial task, and, for example, even heterodyne detection as-
sisted by suitable amplification does not allow its ideal mea-
surement $15%.

Let us denote by H# the two-dimensional vector space
spanned by (# , ±1). In this complex vector space, we can
consider the usual scalar product and the corresponding
norm, namely if (v#)=,s=±1vs

#(# ,s) is an element of H#,
then its norm is -(v#)-= !,s=±1(vs

#(2"1/2. Using the complete-
ness relation !4", we can write any pure state (")!H as

(") = +
−*

+*

d# c#("#) , !5"

where c#= -+#(")-, and

("#) =
+#(")

-+#(")-
!6"

is the normalized projection of (") onto H#. The representa-
tion of a state as in Eq. !5" corresponds to the fact that the
Hilbert space H can be decomposed as a direct integral H

=.−*
+*d#H#. In this representation, the effect of a squeezing

transformation is given by

S!r"(") = +
−*

+*

d# c#e−ir#("#) , !7"

i.e., the squeezing operator introduces a different phase shift
in any space H#. Notice that the states !7" all lie in the
subspace

H" = /(v) = +
−*

+*

d# v#("#)(v# ! L2!R"0 . !8"

The problem of squeezing estimation in the representation
!7" becomes formally equivalent to the problem of phase
estimation.

III. OPTIMAL ESTIMATION OF SQUEEZING

In order to optimize the estimation of squeezing, we de-
scribe the estimation procedure with a positive operator val-
ued measure !POVM" P!r̂". The probability distribution of
estimating r̂ when the true value of squeezing is r is then
given by p!r̂ (r"=Tr$P!r̂"Sr,Sr

†%. The optimality criterion is
specified in terms of a cost function c!r̂−r", that quantifies
the cost of estimating r̂ when the true value is r. Once a cost
function has been fixed, the optimal measurement is defined
in the minimax approach as the one that minimizes the quan-
tity

c̄ = max
r!R

/+
−*

+*

dr̂ p!r̂(r"c!r̂ − r"0 , !9"

namely the maximum of the expected cost over all possible
true values. Generalizing the class of cost functions intro-
duced by Holevo for phase estimation $13%, here we consider
cost functions of the form

c!r" = +
0

+*

d# a# cos!#r" , !10"

where a#-0 for any #&0. This class contains a large num-
ber of optimality criteria, such as the maximum likelihood
cML!r"=−)!r", and the maximum fidelity cF!r"=1
− (*"(S!r"(")(2.

Due to the group symmetry of the problem, instead of
searching among all possible measurements for optimization,
one can restrict attention to the class of covariant measure-
ments $13%, which are described by POVMs of the form
P!r̂"=S!r̂".S!r̂"†, with ./0, such that

+
−*

+*

dr S!r".S!r"† = 1 . !11"

The probability distribution p!r̂ (r" related to a covariant
measurement will depend only on the difference r̂−r, and
this means that the estimation is equally good for any pos-
sible value of the unknown squeezing. The proof that in the
minimax problem the optimal measurement can be searched
among the covariant ones holds both for compact $13% and
noncompact $16% group.
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The optimization of the covariant measurement for any
cost function in the class !10" can be obtained as in the case
of phase estimation with degeneracy $9%. The optimal cova-
riant POVM is then given by

P!r" = (0!r")*0!r"( , !12"

where

(0!r") = +
−*

+* d#
#2$

e−ir#("#) . !13"

Notice the correspondence of (0!r") with the vectors (e!1")
=,n=0

* ein1

#2$
(n) that arise in the context of optimal phase esti-

mation !here (n) are the nondegenerate eigenvectors of the
photon number operator a†a". The vectors (0!r") are orthogo-
nal in the Dirac sense, namely the optimal POVM is a von
Neumann measurement. The projection ("#) of Eq. !6", con-
tained in the expression !13" makes the optimal measurement
depend on the input state ("). Accordingly, one obtains dif-
ferent noncommuting observables, corresponding to different
input states.

The normalization of the POVM !12" can be easily
checked, since .−*

+*drP!r"=1", where 1" is the identity in the
subspace H" defined in Eq. !8". Clearly, the P!r" can be
arbitrarily completed to the whole Hilbert space, without af-
fecting the probability distribution of the outcomes.

Using Eqs. !5"–!7", the optimal probability distribution
for an input state (") is given by

p!r̂(r" = *"(S!r"†P!r̂"S!r"(") = (*0!r̂"(S!r"(")(2

=
1

2$
1+

−*

+*

d# ei!r̂−r"##*"(+#(")12

. !14"

Since the probability distribution depends only on the
difference r̂−r, from now on we will write p!r̂−r"
instead of p!r̂ (r". Representing the projection +# as +#

=.−*
+*!d2 /2$"ei2!#−K", the probability distribution of Eq. !14"

can be rewritten as

p!r" = 1+
−*

+* d#

2$
eir##+

−*

+*

d2 ei2#*"(S!2"(")12

. !15"

The optimal measurement !12" can be compared with that
given in Ref. $7%, which is described in our notation by the
POVM

P̃!r" = ,
s=±1

(0s!r")*0s!r"( , !16"

where

(0s!r") = +
−*

+* d#
#2$

e−ir#(#,s) . !17"

Using Eq. !3", it is easy to see that (0±!r") are eigenvectors of
the quadrature X corresponding to the eigenvalues ±er, and
hence the POVM !16" corresponds to measuring the observ-
able ln(X(, independently of the input state. As we will see in
the following, there are input states for which the observable

ln(X( gives a very inaccurate estimation compared with the
optimal one.

The measurement P̃!r" is not optimal, and gives a biased
probability distribution, namely the average value of the es-
timated parameter does not coincide with the true value, and
also the most likely value in the probability distribution is
not the true one !see, e.g., the asymmetric probability distri-
bution for the vacuum state in Fig. 1". Such drawbacks do
not occur in the optimal probability distribution !14". Notice
also that the measurement P̃!r" is “rank two” in the subspace
H" of interest, while the optimal measurement is “rank one.”
The differences between the two measurements can be un-
derstood intuitively as follows. Essentially, both POVMs are
based on the Fourier transform of the eigenvectors of the
operator K. However, since the Fourier transform is not
uniquely defined due to the degeneracy of K, one should
optimize it versus the input state.

In the case of a coherent input state (3), the probability
distribution !15" can be specified as follows

p!r" = e−(3(21+
−*

+* d#

2$
e−i#r

4#+
−*

+* d2

#cosh 2
ei2#e1/2 tanh 2!3*2−32"e(3(2/cosh 212

.

!18"

This probability distribution has been plotted for increasing
real values of 3 in Fig. 2, where one can easily observe the
corresponding improvement in the estimation.

For large values of (3(, from Eq. !18" one obtains asymp-
totically the Gaussian distribution

p!r" =#2(3(2

$
e−2(3(2r2

, !19"

that provides a root-mean-square !rms" error on the estima-
tion of r as 5r=1/ !2#n̄", where n̄= (3(2 is the mean photon
number. Notice that, for real 3, the optimal estimation is
obtained asymptotically by measuring the quadrature X and
estimating r=ln(x /3( in correspondence with the outcome x.
On the other hand, if 3 is purely imaginary, one achieves

FIG. 1. Probability distributions for the estimation of squeezing
on a vacuum input state. The asymmetric distribution comes from
the suboptimal measurement of Ref. $7% in Eq. !16". The symmetric
distribution corresponds to the optimal measurement of Eq. !12".
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asymptotically the optimal estimation by measuring the
quadrature Y—instead of X—and estimating r=ln(y /3(. As
we already stressed, the optimal measurements do depend
strongly on the input state. The scheme of Ref. $7%, which
consists of measuring the observable ln(X( independently of
the input state, gives a r.m.s. error which for purely imagi-
nary 3 takes the constant value 5r=1.1107, independently of
(3(.

The asymptotic performance 5r=1/ !2#n̄" resulting from
Eq. !19" in the optimal estimation for coherent input states
can be improved to 5r=1/ !2n̄" by using displaced squeezed
states (3 ,z)=D!3"S!z"(0), with 3 ,z!R. In fact, from the
relation D!3"S!z"=S!z"D!3e−z", the probability distribution
p!r" is given by Eq. !18" just by replacing 3 with 3e−z. In the
asymptotic limit of large number of photons n̄= (3(2
+sinh2 z, the minimization of the rms gives the optimal scal-
ing 5r=1/ !2n̄", for 3=#n̄ /2 and z=−1/2 ln!2n̄". This corre-
sponds to approximate the eigenvectors of the quadrature
operator X. Likewise, the same scaling can be obtained with
purely imaginary 3, by taking 3= i#n̄ /2 and z=1/2 ln!2n̄".
In this case, the input states are approximate eigenvectors of
the conjugate quadrature Y.

In the asymptotic regime, the optimal performance for
real 3 can be achieved simply by measuring the quadrature X
and estimating r=ln(x /3(, in correspondence to the outcome
x. For purely imaginary 3, one has to measure Y instead, and
to estimate r=−ln(y /3( if the outcome is y. However, it is
important to stress that homodyne measurement becomes op-
timal only for particular input states and in the asymptotic
limit of large energy, while for finite energy the optimal mea-
surement is described by the POVM in Eq. !12".

IV. CONCLUSIONS

In this paper, we presented a covariant measurement for
estimating an unknown squeezing parameter that is optimal
for a large class of figures of merit. The optimal detection is
given by a suitable Fourier transform of the eigenstates of
the generator of squeezing. In fact, due to the degeneracy of
the squeezing operator, there is a freedom in choosing how to
perform the Fourier transform, and the choice must be opti-
mized according to the input state. Hence, for different input
states one has different optimal estimations corresponding to
different observables. The optimal measurement leads to an
unbiased estimation, and the outcome of the measurement
that is most likely to be obtained coincides with the true
value of the unknown squeezing. For coherent input states,
the rms error scales as 1 / !2#n̄" with the number of photons,
while for displaced squeezed states one achieves 1/ !2n̄" scal-
ing. In the asymptotic regime, such a scaling can be obtained
experimentally by homodyne measurement. The presented
scheme applies to the problem of optimal characterization of
degenerate parametric amplifiers.
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