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Summary. — We propose a new method for detecting the density matrix of the
radiation field via optical homodyne tomography. The tomographic reconstruction is
greatly improved, with very fast data analysis and very reliable statistics on-line with
detection. The Wigner function of the input field is reconstructed also for quantum
superpositions of states. We analyze the sensitivity of Quantum Tomography in
detecting the photon number, the field quadratures, and the phase of radiation
field. A comparison between results of Quantum Tomography and direct detection of
these quantities (photodetection, single homodyne detection, and double homodyne
detection respectively), is given at fixed energy impinged into the experimental
apparatus. We show that, despite tomographic reconstruction provides a complete
characterization of the field state, it is more noisy than single-observable detection
schemes.

1. — Introduction

In the quantum description of radiation all knowable properties of the field are con-
tained in the density matrix and, in principle, an experimental detection of the quan-
tum state is equivalent to detect the probability distribution of any desired observ-
able. Recently, Smithey et al.[1] have experimentally demonstrated the possibility of
detecting the density matrix by means of repeated measurements of the field-quadrature
ap = 2(ae~* +ale’?) at various phases ¢’s. The symmetrized Wigner function W (a, &)
is recovered from the distribution of the homodyne outcomes p(zx, ¢) through the “tomo-
graphic” formula[2]

1) W(xa)= i/jzn Inl/jzo’c /Oﬂi—qﬁ p(,¢) exp {in [z — Re (ae'?)]}

and the reconstruction of W(a,a) from a finite-numerable set of homodyne outcomes
is actually achieved by means of a filtered inverse Radon transform, similarly to the
original technique of X-ray or NMR tomography (for this reason the method has been
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called “Quantum Tomography”). The density matrix in the configuration representation
is obtained through the Fourier transform

oo
(@) (@ +2'|plz — o') = / dy =W (z + iy, — iy)
— 0o

whereas the number representation is achieved by means of the further integration steps

1

(nlplm) = pn.m = V2n2mplm)!
S oo
(3) / dfb’/ dz 6_%(z2+ZI2)Hn($)Hm($I) <x|ﬁ|$l> )

where H,(z) is the Hermite polynomial of degree n. The point of this method is the
Filtered inverse Radon transform, a smoothing procedure on experimental data which
is equivalent to an a priori assumption on the detected density matrix. This introduces
systematic errors on any reconstructed quantity, prevents from evaluating reliable statis-
tical errors, and makes the method affected by fast quantum oscillations of the Wigner
function itself.

Very recently we have proposed an alternative method that completely overcomes the
above difficulties.[3] The novel method relies on the same experimental setup (see Fig.
1), but uses a different algorithm for reconstructing the density matrix. The algorithm
needs no assumption on the state, and is unaffected by oscillations of the Wigner function,
because the density matrix is recovered directly from averages on data. The resulting
tomographic reconstruction is extremely faster than the original filtered technique, and
provides very reliable statistics on-line with detection. In Sect. 2 we briefly describe
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Fig. 1. — Scheme of homodyne tomographic detection

the reconstruction algorithm. In Sect. 3 we show how to obtain the Wigner function
from the detected state. Finally in Sect. 4 we analyze the sensitivity of the tomographic
reconstruction, and compare it with the sensitivity achieved by conventional detection of
single-observables. We show that, despite tomographic reconstruction provides a com-
plete characterization of the field state, it is not convenient when only one quantity is of
interest.



A NOVEL METHOD TO DETECT QUANTUM STATES OF THE RADIATION FIELD 3

2. — Description of the method

The density matrix elements p, ,, in the number representation can be obtained by
the Husimi Q-function Q(a, @) through the formula

1 o™ o™

=907 5o (@@ @) )

(4) Pnm =

a=a=0
The function Q(a, @) is related to the experimental homodyne probabilities as follows|[2]

Qa,a) =
(5) % /_277 ] /_o:ccl)w /07rcl¢p(x,¢) exp {—%172 +in [z — Re (ae"‘i’)]} )

After evaluating derivatives in Eq. (4) analytically, Eqs. (5) and (4) connect the matrix
elements p, ,, to simple averages on homodyne data. Let us denote by p,, n the exper-
imental mean value of p,, ,, obtained from Eqs. (5) and (4) when integral over z and ¢
are replaced with the corresponding experimental averages. Typically the average on the
phase ¢ is evaluated by summing over F' equally spaced values ¢ = f— (f=0,...,F-1).
A lengthy but straightforward derivation leads to the following reconstructlon formula

n+ d]

(6) Prnea= 3 F ZR<d> )(HL@),

where d > 0, the brackets (...)y, denote averaging over the subensemble of data for
fixed phase ¢ = ¢ (with experimental outcome z), [2] is the integer part of z, and the
averaged function H'? (z) is given by

(7) H? (1) = e 202?29 (m —n— %d — %(d+ 1)s 5

1
, = + {d)s; 2$2> .
In Eq. (7) the notation (z), denotes the rest of the division z/2, whereas ®(a, §; 2) is

the confluent hypergeometric function of z with parameters a, (.[4] The fixed matrix
R (4) in Eq. (6) is given by

® R = (272) " 72';1 i
n d
X Z:: Z:: ( ) ( ;i ) (2n +d — 251 — j2)'(251 + j2)!

i+ 2] 11—y (cos ¢)2n+d72j17j272l1 (sin ¢)2j1+j272l2

X
hzo Z:: ll'lz (21 + ja — 202)!(2n + d — 2j1 — jo — 211)!

1
xI' (TL + §d - l1 - l2 + §<d>2 + 1) 5m,ll+l2 .
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Despite apparent complexity of Eqs. (6-8) the average in Eq. (6) is particularly suited
to on-line data analysis. In fact, apart from the sum over data, the procedure requires
just a single sum over m, whereas the hypergeometric functions ®(«, 8; z) are connected
each other iteratively, and the matrix R%‘ﬁ%((ﬁ #) is stored in the machine before beginning
experiments.

We have tested our method on some Monte Carlo simulated experiments, with the aim
of evaluating both the correctness of error statistics and the absence of any systematic
deviation from theoretical values. In order to evaluate the statistical errors, we have
preliminarily studied the distribution of the tomographic outcomes for each matrix ele-
ment around its averaged value, checking that it is perfectly Gaussian for every matrix
element, independently on the kind of considered quantum state (we have considered co-
herent, squeezed, and general quantum superpositions of number states). Then, relying
on normal distribution of deviations dpy, ,, the error €, ,, of the matrix element p, ,
has been evaluated as usual, namely by dividing the ensemble of data into subensem-
bles (here also called ‘experiments’), and then calculating the r.m.s. deviation of the
subensemble average with respect to the global average. A sample histogram for the first
30 x 30 matrix elements is given in Fig. 2, for a coherent state with (n) = 4. Notice that
about 68% of deviations lies within one standard deviation, corresponding to an optimal
x? slightly greater than one. Analogous results have been obtained for all other kinds of
states here considered. As an example, we report the results of reconstruction based on
a Monte Carlo simulated tomography on a squeezed states with (n) = 2 (one squeezing
photon and one signal photon). In Tab. I we report the first few matrix elements com-
pared with the theoretical values. The number probability distribution—the diagonal
terms of density matrix p, ,—is reported in Fig. 3 up to n = 15. The maximum index
for the matrix elements is limited only by machine memory and precision (at present we
compute matrix elements pp, , up to n,m = 31).

In Fig. 4 a sample of both normalization and mixing is given versus the number of
data subensembles, for a highly excited coherent state [less excited states—coherent or
not—exhibit a more rapid convergence].

3. — Reconstruction of the Wigner function
The symmetrized Wigner function W («, @) can be reconstructed from tomographic

data using the formula[5]

W (a,@) = =Tr [pD(2a) exp (imala)]

(9) == > ()"pum(m|D(2a)n),

where D(a) = exp (daT — aa) is the displacement operator. Eq. (9) can be rewritten as
Fourier transform

(10) W(aa d) =Re Z eid¢ Z A(”a da |a|2)pn,n+d

d=0 n=0
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where

(1) AmdifaP) = ()22~ fa)l2al"y | e PP Li(2al)

and L (x) denotes the Laguerre polynomials. We have simulated an optical homodyne
tomography (with F' = 27 scanning phases) performed on a “Schrédinger cat” state
(here a superposition of symmetrical coherent states) and then we have reconstructed
the Wigner function. Plots of the Wigner function are given in Fig. 5 for a superposition
of two coherent states with (n) = 5 average photons each. As we can see, details and fast
oscillations due to quantum interference are well resolved. This is the most improvement
of our method with respect to the original smoothed algorithm, because we have no
resolution cutoff in phase-space.

4. — Sensitivity

Quantities as phase, field quadrature and photon number could be measured by de-
tecting the density matrix, but also in a direct way by double homodyne,[6] single ho-
modyne, and direct photodetection respectively. Direct measurements give only partial
information on the quantum state, and one expects that tomography —providing the
maximum available information— should require much more measures in order to achieve
the same sensitivity of single-observable detection.

In this section we compare the sensitivity of quantum tomography with those of con-
ventional detection methods [7]. In making such comparison we have to keep in mind
that tomography always needs a set of many repeated measurements on the same field:
hence, when comparing tomography with single-observable schemes, the same number of
repeated measurements must be considered. In a scheme of N repeated measurements of
the quantity z, accuracy dz rescales as 6z o N~1/2. The proportionality constant gener-
ally depends on the kind of detection, and for experimental Gaussian distributions around
the average one has that 6z = \/{Ax2)/N, (Az?) being the variance of z. In practice, in
order to evaluate dz one can take advantage of the central limit theorem, which assures
that the partial average over a block of NV data is always Gaussian distributed around
the global average over many blocks (for large N;). We compare quantum tomography
with double homodyne phase detection, single homodyne quadrature detection, and pho-
ton number detection: all sensitivities will be given as a function of the total number of
photons Ny = N(n) impinged in the apparatus.

The probability distribution of an ideal phase detection is given by[8]

1
12 P(p) = — (m=—njo, .
(12) (¥) o= n;:()e Pn,

The knowledge of the density matrix from tomographic detection allows to evaluate the
ideal phase probability (12), that otherwise cannot be directly measured in any known
feasible experiment. In a tomographic experiment the reconstructed density matrix leads
to an ideal phase distribution which, however, is still sensitive to errors on matrix el-
ements, and thus is affected by fluctuations on the mean value. In other words, even
though the ideal phase distribution can be reconstructed from tomographic data, the
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variance (A¢?) of the distribution does not correspond to the actual sensitivity of the
method, and the resulting error §¢ on the average phase is much larger than /(A¢?)/N.
As there is no feasible scheme for ideal phase detection (12), we compare tomographic
results with those from a double homodyne phase detection.[9] In Fig. 6 the ratio between
tomographic and double homodyne phase sensitivities is plotted for various coherent
states as a function of the total mean energy impinged into the apparatus. The noise
added by tomography is apparent: the ratio between sensitivities is of several decibels.
The added noise is almost independent on the total energy impinged in the apparatus,
but depends on the mean photon number of the state.

Now we perform the above analysis as regards the field quadrature a¢ = %(a +a') and
the photon number. Again quantum tomography adds noise. For the quadrature the
ratio of sensitivities depends on the mean photon number of the input state (see in Fig.
6), whereas for number detection such dependence becomes very weak (see Fig. 7).

The asymptotic ratio (for a very large number of repeated experiments) between tomo-
graphic and direct single-observable sensitivities is plotted in Fig. 7 versus the number
of photons of the input coherent state. In summary, we estimate that, for large num-
bers of photons and input coherent states, tomography adds more than 10dB of noise in
phase detection (with respect to double homodyne), 7dB in photon number detection,
and more that 8dB in quadrature detection.
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TABLE 1. — First detected matriz elements of a squeezed state with (n) = 2 and one squeezing-
photon (the matriz is real; the theoretical values are given in parenthesis). The detected values
are obtained for 120 experiments with F = 27 scanning phases and 120 measurements each.

| | 0 | 1 | 2 | 3 | 4 | 5
0 0.52794 0.0013 | 0.153840.0012 | 0.294740.0015 | 0.139640.0016 | 0.2006+0.0019 | 0.1133-0.0019
(0.5275) (0.1547) (0.2957) (0.1393) (0.2015) (0.1145)
1 0.153840.0012 | 0.043240.0021 | 0.084840.0014 | 0.041840.0017 | 0.056840.0016 | 0.0336-:0.0015
(0.1547) (0.0454) (0.0867) (0.0409) (0.0591) (0.0336)
2 0.29474+0.0015 | 0.084840.0014 | 0.1657+0.0021 | 0.0799-+0.0013 | 0.1123+0.0016 | 0.0666-0.0017
(0.2957) (0.0867) (0.1658) (0.0781) (0.1130) (0.0642)
3 0.1396+0.0016 | 0.041840.0017 | 0.0799+0.0013 | 0.0387-+0.0020 | 0.0519+0.0014 | 0.0313+0.0016
(0.1393) (0.0409) (0.0781) (0.0368) (0.0532) (0.0303)
4 0.2006+0.0019 | 0.056840.0016 | 0.1123+0.0016 | 0.0519+0.0014 | 0.075740.0022 | 0.0440+0.0015
(0.2015) (0.0591) (0.1130) (0.0532) (0.0770) (0.0437)
5 0.11334+0.0019 | 0.033640.0015 | 0.0666+0.0017 | 0.0313+0.0016 | 0.044040.0015 | 0.027140.0024
(0.1145) (0.0336) (0.0642) (0.0303) (0.0437) (0.0249)
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Fig. 2. — Distribution of normalized deviations from the theoretical values App ., =

(Pr,m — Pn,m) [En,m for the first 30 x 30 matrix elements. The quantum state is a coherent one
with (n) = 4. The histogram pertains 1000 experiments (subensembles of data) with F = 27
scanning phases each, and 200 measurements for each phase. A standardized (unit variance)
Gaussian curve is superimposed.
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Fig. 3. — Number probability distributions for states of Tab. I (F' = 27 scanning phases are
used; there are 100 experiments and 100 measurements for each phase).
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Fig. 4. — Normalization and mixing of the reconstructed density matrix versus the number data
for each experiment (subensemble of data) for a coherent state with (n) = 8. Error bars are
estimated on a set of five experiments.
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Fig. 5. — Reconstructed Wigner function of quantum superpositions of two and four coherent
states with (n) = 5 each. 1000 experiments of 27 x 1000 data each have been used.
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Fig. 6. — Ratio (in dB) between sensitivity from tomographic reconstruction and from direct
detection for phase and field quadrature as a function of the total mean number of photons
impinged into the apparatus Nr = N(n), with N the total number of experiments. Results for
different coherent states are reported (circle: (n) = 2, cross: (n) = 4, square: (n) = 6, triangle:

(n) = 8).
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Fig. 7. — Ratio (in dB) as in Fig. 6 for number of photons and asymptotic ratio between
tomographic and single-observables sensitivity as a function of the mean photon number of the
input coherent states (here Niot = (n) * 65536 * 1000 * 27).



