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We consider generalisations of the dense coding protocol with an arbitrary number
of senders and either one or two receivers, sharing a multiparty quantum state, and using
a noiseless channel. For the case of a single receiver, the capacity of such information
transfer is found exactly. It is shown that the capacity is not enhanced by allowing the
senders to perform joint operations. We provide a nontrivial upper bound on the capacity
in the case of two receivers. We also give a classification of the set of all multiparty
states in terms of their usefulness for dense coding. We provide examples for each of
these classes, and discuss some of their properties.

Keywords: Quantum information theory; quantum dense coding; entanglement

1. Introduction

Entanglement among quantum systems can be used to perform tasks that are not

possible with classical states. Phenomena where entanglement plays a crucial role

include e.g. teleportation 1 and dense coding 2. In the dense coding protocol, en-

tangled quantum states are used to send classical information from a sender (say,

Alice) to a receiver (say, Bob). Suppose that Alice wants to send two bits of classical

information to Bob. Then the Holevo bound, to be discussed later, shows that Alice

must send two qubits (two-dimensional quantum states) to Bob, if only a noiseless

quantum channel is available. However, if Alice and Bob have previously shared

entanglement, then Alice may have to send less than two qubits to Bob. It was

shown by Bennett and Wiesner 2, that by using a previously shared singlet, Alice

will be able to send two bits to Bob, by transmitting just a single qubit.

To consider a realistic scenario, two avenues are usually taken. One approach is

∗Also at Institució Catalana de Recerca i Estudis Avançats.
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to consider a noisy quantum channel, where the additional resource is an arbitrary

amount of shared bipartite pure state entanglement (see e.g. 3,4,5,6). This is the

scenario of the so-called entanglement assisted capacity, which refers to a property

of the channel. The other approach is to consider a noiseless quantum channel, while

the assistance is by a given bipartite mixed entangled state (see e.g. 5,6,7,8,9,10). In

this second case the capacity refers to a feature of the state. In this paper, we

consider the second approach, in the general situation of several senders and one

or two receivers. Therefore the senders and the receiver(s) share a given multiparty

state. The senders (called Alices, and named as A1, A2, · · · , AN ) want to send

classical information to the receivers (Bobs, B1 and B2), where the information

of one Alice can be different from that of another. All the parties that take part

in the protocol are at distant locations. Consequently, both the encoding of the

information by the Alices, and the decoding of it by the Bobs, must be by local

operations. Additionally, the Alices can communicate between themselves over a

classical channel, and likewise the Bobs can do so between themselves. Classical

communication is of course not allowed between the senders and the receivers.

We considered this scenario in Ref. 11, and named it “distributed quantum

dense coding”. In this paper, we further discuss the bounds on the capacity of

dense coding in this scenario, for a given state, where the capacity is defined as

the number of classical bits that can be accessed by the receivers, per use of the

noiseless channel. Also, we give a classification of multipartite states according to

their degree of ability to assist in distributed dense coding.

The paper is organized as follows. In Section 2 we discuss the Holevo bound,

which is a crucial element in finding the capacity of dense coding for the case of

a single receiver. In Section 3, we consider the case of dense coding with a single

sender and a single receiver. In Section 4, we take up the case of many senders

but a single receiver, and find the capacity in this scenario. We show that the

capacity is not enhanced by allowing the senders to perform joint operations. To

consider the case of many receivers, we must obtain a Holevo-like upper bound

on classical information that can be decoded from multiparty quantum ensembles.

Such a bound, derived in Ref. 13 for bipartite ensembles, is discussed in Section

5. In Sec. 6 we obtain an upper bound of dense coding schemes for an arbitrary

number of senders and two receivers (a bound for multiparty ensembles is currently

absent 14). In Sec. 7, we will discuss a classification of multiparty states according

to their degree of usefulness in dense coding protocols and give some examples. In

Sec. 8 we will summarize our results and discuss some related open problems.

2. The Holevo bound

The Holevo bound is an upper bound on the amount of classical information that

can be accessed from a quantum ensemble in which the information is encoded.

Suppose that Alice (A) has the classical message i that occurs with probability

pi. Alice encodes this information i in a quantum state ρi, and sends it to Bob.
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Bob receives the ensemble {pi, ρi}, and wants to obtain as much information as

possible about i. To do so, he performs a measurement, that gives the result m with

probability qm. Let the corresponding post-measurement ensemble be {pi|m, ρi|m}.
The information gathered can be quantified by the mutual information between the

message index i and the measurement outcome 15:

I(i : m) = H({pi}) −
∑

m

qmH({pi|m}). (1)

Here H({rx}) = −∑x rx log2 rx is the Shannon entropy of the probability dis-

tribution {rx}. Bob will be interested to obtain the maximal information, which

is maximum of I(i : m) for all measurement strategies. This quantity is called the

accessible information:

Iacc = max I(i : m), (2)

where the maximization is performed over all measurement strategies.

The maximization involved in the definition of accessible information is usually

hard to compute, and hence the importance of bounds 12,16. In particular, in Ref.
12, a universal upper bound on Iacc, the Holevo bound, is given (see also 17,13,18)

Iacc({pi, ρi}) ≤ χ({pi, ρi}) ≡ S(ρ) −
∑

i

piS(ρi). (3)

Here ρ =
∑

i piρi is the average ensemble state, and S(ς) = −tr(ς log2 ς) is the

von Neumann entropy of ς. The Holevo bound is asymptotically achievable in the

sense that if the sender is able to send long strings of the input quantum states ρi,

then there exists a particular encoding and a decoding scheme that asymptotically

attains the bound 19.

3. Capacity of dense coding with one sender and one receiver

Suppose that Alice and Bob share a quantum state ρAB. Alice performs the unitary

operation Ui with probability pi, on her part of the state ρAB to encode the classical

information i. Subsequent to her unitary rotation, she sends her part of the state

ρAB to Bob. Bob then has the ensemble {pi, ρi}, where

ρi = Ui ⊗ 1 ρABU †
i ⊗ 1 . (4)

The information that Bob is able to gather is Iacc({pi, ρi}). This quantity is

bounded from above by χ({pi, ρi}). The “one-capacity” C(1) of dense coding for

the state ρAB is the Holevo bound for the best encoding by Alice:

C(1)(ρ) = max
pi,Ui

χ({pi, ρi}) ≡ max
pi,Ui

(

S(ρ) −
∑

i

piS(ρi)

)

. (5)

The superscript (1) reflects the fact that Alice is using the shared state once at a

time, during the asymptotic process. She is not using entangled unitaries on more
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than one copy of her parts of the shared states ρAB. As we will see below, encoding

with entangled unitaries does not help her to send more information to Bob.

In performing the maximization in Eq. (5), first note that the second term in

the right hand side (rhs) is equal to −S(ρ), for all choices of the unitaries and

probabilities, as unitary operations do not change the spectrum, and hence the

entropy, of a state. Secondly, we have

S(ρ) ≤ S(ρA) + S(ρB) ≤ log2 dA + S(ρB), (6)

where dA is the dimension of Alice’s part of the Hilbert space of ρAB, and ρA = trBρ,

ρB = trAρ. Moreover, S(ρB) = S(ρB), as nothing was done at Bob’s end during

the encoding procedure. Therefore, we have

max
pi,Ui

S(ρ) ≤ log2 dA + S(ρB). (7)

This bound is reached by any complete set of orthogonal unitary opera-

tors {Wj}, to be chosen with equal probabilities, which satisfy the trace rule
1

dA

∑dA

j=1W
†
j ΞWj = tr[Ξ]I, for any operator Ξ. Therefore, we have

C(1)(ρ) = log2 dA + S(ρB) − S(ρ). (8)

The optimization procedure above essentially follows that in Ref. 9. Several

other lines of argument are possible for the maximization. One approach is given

in Ref. 8 (see also 11). Another way to proceed is to guess where the maximum is

reached, and then perturb the guessed result. If the first order perturbations vanish,

the guessed result is correct, as the von Neumann entropy is a concave function and

the maximization is carried out over the continuous set of all {pi, Ui} 11. Note here

that without using the additional resource of entangled states, Alice will be able

to reach a capacity of just log2 dA bits. Therefore, entanglement in a state ρAB is

useful for dense coding if S(ρB) − S(ρ) > 0. Such states exist, an example being

the singlet state.

3.1. Entangled encoding and the asymptotic capacity

Suppose now that Alice is able to use entangled unitaries on two copies of the

shared state ρ. For definiteness, let us call the copies ρa1b1 and ρa2b2 (a1 and a2

refer to Alice’s states, b1 and b2 to Bob’s). Alice may possibly apply unitaries

Ui that cannot be written as Ui = Ua1

i ⊗ Ua2

i . Applying such a general set of

unitaries Ui with probabilities pi, the output ensemble is {pi, ρ
(2)
i }, where ρ

(2)
i =

Ua1a2

i ⊗1⊗ 1
(

ρa1b1 ⊗ ρa2b2
)

Ua1a2†
i ⊗1⊗ 1. It is natural to define the “two-capacity”

of dense coding for the state ρ as

C(2)(ρ) =
1

2
max
pi,Ui

χ({pi, ρ
(2)
i }) ≡ 1

2
max
pi,Ui

(

S(ρ(2)) −
∑

i

piS(ρ
(2)
i )

)

, (9)

where ρ(2) =
∑

i piρ
(2)
i . Again the second term within the maximization of Eq.

(9) is just −S(ρ ⊗ ρ) = −2S(ρ). The first term is bounded from above by
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log2(da1
da2

) + S(ρb1 ⊗ ρb2) = 2 log2 dA + 2S(ρB), which can be reached by any

complete set of orthogonal unitaries on A1A2 that satisfies the trace rule. (Here

daj
is the dimension of the particle aj , and ρbj = traj

ρajbj , where j = 1, 2.) How-

ever, one such set of unitaries is formed by tensor products of two complete sets

of orthogonal unitaries on A1 and A2. Therefore, product unitaries are enough

to attain C(2), and its value is equal to that of C(1). Similar arguments hold for

C(L)(ρ) = 1
L

maxpi,Ui
χ({pi, ρ

(L)
i }) for any L, where the Ui’s are now possibly en-

tangled unitaries over the L-fold tensor product of the Hilbert space on Alice’s side.

Consequently, the asymptotic capacity (henceforth called capacity) of dense coding

of a bipartite state ρAB is given by

C(ρ) = lim
L→∞

C(L)(ρ) = log2 dA + S(ρB) − S(ρ). (10)

Note however that this additivity is shown only in the case of encoding by

unitary operations. In this paper, both in the bipartite as well as in the multipartite

scenario, we will consider unitary encoding only.

3.2. Bipartite bound entangled states

A bipartite state ρAB is useful for dense coding if and only if S(ρB)−S(ρ) > 0. We

now show that this relation cannot hold for bipartite bound entangled states 20.

Let us first state the reduction criterion 21 for detecting distillable states: If a state

ρAB is separable or bound entangled, then ρA ⊗ IdB
≥ ρAB and IdA

⊗ ρB ≥ ρAB.

There exist distillable states that violate this criterion. Any state ρAB for which

S(ρB) − S(ρAB) > 0 violates the reduction criterion 22 (see also 23), and is hence

distillable. Therefore, a state that is useful for dense coding is always distillable,

i.e. free entangled. It has been shown that bound entangled states are not useful

for sending classical information even by more general encoding operations 5.

4. Capacity of dense coding with many senders and one receiver

Suppose now that there are N Alices, viz. A1, A2, · · ·, AN , who want to send infor-

mation to a single receiver, Bob (B). They share the quantum state ρA1A2···AN B.

Depending on the classical information ik that Ak wants to send to Bob, she applies

the unitary operation Uik
with probability pik

(k = 1, 2, · · · , N). After applying the

unitary operations, they send their parts of the quantum state to Bob, who has now

the ensemble {p{i}, ρ{i}}, where {i} denotes the string {i1, i2, · · · , iN}. Moreover

p{i} = pi1pi2 · · · piN
, ρ{i} = U{i} ⊗ 1 ρA1A2···AN BU †

{i} ⊗ 1, (11)

where U{i} = Ui1 ⊗ Ui2 ⊗ · · · ⊗ UiN
. The task of Bob is to obtain as much in-

formation as possible about the message string {i}. Since the Holevo bound is

asymptotically attainable by product encoding (Section 2), the “one-capacity” of

the state ρA1A2···AN B in this case is defined as

C(1)(ρ) = max
p{i},U{i}

χ({p{i}, ρ{i}}). (12)
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To avoid multiple indices, we use the same notation as in the case of a single

sender. As we will see, the capacities in the case of a single sender and multiple

senders are the same (at least in the case when there is only a single receiver).

Analogous considerations as for the maximization of Eq. (5) lead to

C(1)(ρ) = log2 dA1
+ log2 dA2

+ · · · + log2 dAN
+ S(ρB) − S(ρ), (13)

where dAk
is the dimension of the Hilbert space in possession of the kth Alice Ak.

Moreover by similar arguments as in Section 3.1, also in this case, the one-capacity

can be shown to be the asymptotic capacity, so that

C(ρ) = log2 dA1
+ log2 dA2

+ · · · + log2 dAN
+ S(ρB) − S(ρ). (14)

Again, we use the same notation as in the case of a single sender. The capacity

is reached by any complete set of orthogonal unitaries that satisfies the trace rule.

However such a complete orthogonal set of unitaries of the A1A2 · · ·AN space can

be formed by product unitaries of the individual spaces of the Ak. This leads us to

the conclusion that even if the Alices are allowed to perform entangled unitaries,

this will not enhance the dense coding capacity of the state ρA1A2···AN B. We will

illustrate the case of many Alices in detail for clarity. However, as long as one

considers unitary encodings, it is clear that the Holevo bound is the same for fac-

torised unitaries, and many Alices are equivalent to a single one with the according

dimension.

5. Holevo-like upper bound on locally accessible information

The Holevo bound is an upper bound on the accessible information encoded in a

quantum ensemble that is sent to a single receiver. This is also an upper bound

on the accessible information encoded in a quantum ensemble that is sent to two

receivers, where the receivers are allowed to perform only local operations and clas-

sical communication (LOCC). However, in Ref. 13, we have obtained an independent

upper bound for this situtation. (For a lower bound, see Ref. 24.) Suppose that a

sender encodes the classical message i in the bipartite quantum state ρB1B2

i with

probability pi, and sends it to two Bobs (Bob1 (B1) and Bob2 (B2)). The tasks of

the Bobs is to gather as much information as posssible about i. Let the accessible

information in this situation be called “locally accessible information”, denoted by

ILOCC
acc . It was shown in Ref. 13 that

ILOCC
acc ≤ χLOCC ≡ S(ρB1) + S(ρB2) − max

Z=B1,B2

piS(ρZ
i ), (15)

where ρB1

i = trB2
ρB1B2

i , ρB2

i = trB1
ρB1B2

i , ρZ =
∑

piρ
Z
i , Z = B1, B2.

This bound is not necessarily better than the Holevo bound for all ensembles. For

example, for the ensemble formed by the states |00〉, |11〉, taken with probability
1
2 each, the Holevo bound equals 1, while our local bound χLOCC is 2. This, of

course, implies that the bound χLOCC on ILOCC
acc is asymptotically not attainable in

general. However, there are important examples for which the local bound (χLOCC)
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is drastically smaller than the global one (χ). For example, for the four Bell states

|ψ±〉, |φ±〉, chosen with probabilities pi (i = 1, 2, 3, 4), χ = H({pi}), while χLOCC =

1. In particular, for equal apriori probabilities, the global bound is 2, while the local

one is still unity.

6. Capacity of dense coding with many senders and two receivers

We will now consider the case of dense coding with two receivers. Suppose therefore

that N Alices (A1, A2, · · · , AN ) and two Bobs (B1 and B2) share a quantum state

ρA1,A2,··· ,AN B1B2 . To send the classical information ik, Ak performs the unitary

operation Uik
, with probability pik

. Then the Alices send their part of the resulting

state to the Bobs. For definiteness, let us assume that A1, A2, · · · , AM send their

parts of the resulting state to B1, while the rest of the Alices send to B2. Hence the

Bobs receive the ensemble {p{i}, ρ{i}}, where p{i} = pi1pi2 · · · piN
, ρ{i} = U{i} ⊗

1⊗ 1 ρA1A2···AN B1B2U †
{i} ⊗ 1⊗ 1, with U{i} = Ui1 ⊗ Ui2 ⊗ · · · ⊗ UiN

. Let us warn

here that the same notation ρ{i} was used in the case of a single receiver in Section

4, although the situation there is different than this one. The aim of the Bobs is

to gather maximal information from the ensemble {p{i}, ρ{i}} about the message

string {i} = {i1, i2, · · · , iN}, but they are restricted to perform only LOCC between

themselves. The “one-capacity” in this case is

C
(1)
LOCC(ρ) = max

p{i},U{i}

ILOCC
acc ({p{i}, ρ{i}}), (16)

so that

C
(1)
LOCC(ρ) ≤ max

p{i},U{i}

χLOCC({p{i}, ρ{i}}), (17)

where the ensemble states ρ{i} in the two above equations is to be considered

in the A1A2 · · ·AMB1 : AM+1AM+2 · · ·ANB2 bipartite split, for calculating the

locally accessible information and its local bound. We have

χLOCC({p{i}, ρ{i}}) = S(ρ1) + S(ρ2) − max
Z=1,2

p{i}S(ρZ{i}), (18)

where ρ1{i} = trAM+1···AN B2
ρA1···AN B1B2

{i} , ρ2{i} = trA1···AM B1
ρA1···AN B1B2

{i} , and ρZ =
∑

p{i}ρ
Z

{i},Z = 1,2.

The last term on the rhs of Eq. (18) equals −maxZ=1,2 S(ρZ), for any choice of

unitaries and probabilities in the maximization of Eq. (17), where

ρ1 = trAM+1AM+2···AN B2
ρ, ρ2 = trA1A2···AM B1

ρ. (19)

Next, note that the maximization in Eq. (17) of the first two terms on the rhs

of Eq. (18) can be independently performed. For example, the maximization of

S(ρ1) can be performed solely on the probabilities p1, p2, · · · , pM , and the unitaries

U1, U2, · · · , UM and can be done as in Section 4. Similar considerations hold for the
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maximization of S(ρ2) over the probabilities pM+1, pM+2, · · · , pN , and the unitaries

UM+1, UM+2, · · · , UN . So finally, we have

C
(1)
LOCC(ρ) ≤ log2 dA1

+ · · · + log2 dAN
+ S(ρB1) + S(ρB2) − max

Z=1,2
S(ρZ). (20)

For unitary encoding, the rhs of Eq. (18) is additive, and so the asymptotic

capacity of distributed dense coding is also bounded by the same quantity:

CLOCC(ρ) ≤ log2 dA1
+ · · · + log2 dAN

+ S(ρB1) + S(ρB2) − max
Z=1,2

S(ρZ). (21)

The partition in Eq. (19) corresponds to the partition in two Bobs’ states after they

received the states ρ{i}. In general, the local capacities of the state depend on this

partition.

7. A classification of multiparty states by their dense-codeability

A simple lower bound on CLOCC can be obtained by considering the case when the

two Bobs do not use communication, whereby the two channels (one from the first

M Alices to B1 and the other from the next N −M Alices to B2) are independent,

and so the capacities add. Let us denote the capacity without communication as

CLO, and thus have

CLOCC(ρ) ≥ CLO(ρ) = C(ρ1) + C(ρ2), (22)

where C(ρ) is given by Eq. (14), and ρ1 and ρ2 are defined in Eq. (19). If the Bobs

are together, and are allowed to perform global measurements, then the capacity is

given by using Eq. (14). This capacity is also an upper bound of CLOCC . Therefore,

CLOCC(ρ) ≤ log2 dA1
+ log2 dA2

+ · · · + log2 dAN
+ S(ρB1B2) − S(ρ) = CG(ρ).(23)

The rhs of the above inequality (23) is precisely the dense coding capacity of

the state ρ, when the two receivers are together, and hence are allowed to perform

global measurements. We have denoted this quantity by CG(ρ). With the help

of the quantities CG, CLOCC , CLO, and the relations between them, multipartite

states can be classified according to their usefulness for dense-coding. Consider

therefore the N + 2-partite state ρA1A2···AN B1B2 , and consider first the bipartite

split A1A2 · · ·AN : B1B2. This is the senders to receivers bipartite split in the

distributed dense coding scenario. In this bipartite split, the usual classification is

into four classes: Separable states (S), bound entangled states with positive partial

transpose (PBE) 20, bound entangled states with nonpositive partial transpose

(NBE) (if existing) 25, and distillable states. As shown in Sec. 3.2, bound entangled

states (both PBE and NBE), as well as separable states are not useful for dense

coding. Thus only distillable states can be useful. However, not all distillable states

can be used. For example, even for 2 ⊗ 2 states, the Werner state 26

ρp = p|ψ−〉〈ψ−| + (1 − p)
I ⊗ I

4
(24)
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is distillable when p ≥ 1
3 . But using Eq. (10), one can see that the state ρp is

good for dense coding only for p ≥ 0.7476. Going back to our multiparty state

ρA1A2···AN B1B2 in the bipartite split A1A2 · · ·AN : B1B2, the distillable states are

divided into two categories: Ones which are globally dense-codeable, and ones which

are not. The globally dense-codeable (G-DC) states are those which can be useful

for dense coding when the two Bobs are at the same location. Therefore they are

precisely those for which CG > log2 dA1
+ log2 dA2

+ · · · + log2 dAN
, i.e. for which

S(ρB1B2) > S(ρ). The states which are distillable in the A1A2 · · ·AN : B1B2 split,

and yet are not useful for dense coding are denoted by D.

?

S
D G−DC LOCC−DCNBEPBE

LO−DC

Fig. 1. Classification of multipartite quantum states, according to their usefulness for dense
coding with more than one receiver. Notice that the labels classify only the states in the shell and
not in the whole set (ellipse). Separable, bound entangled states with positive partial transpose,
bound entangled states with nonpositive partial transpose (if existing), distillable but not useful
for dense coding respectively are denoted as S, PBE, NBE, D. In the bipartite case, there is just
one more shell, consisting of states which are distillable and can be used for dense coding. These
states are in the shell G-DC. In the multiparty case, there also exist shells which contain states
that are good for G-DC but not good for LOCC-DC. Similarly, the shell denoted as LOCC-DC
contain states who are useful for LOCC-DC but not for LO-DC, as explained in the text. Also there
are states which are good for dense coding even without communication (LO-DC). As discussed
in the text, all shells are non-empty and of nonzero measure. Borders between sets that are not
known to be convex are drawn as dashed lines.

Although the classification above into S, PBE, NBE, D, and G-DC was con-

sidered for a multiparty state, this is essentially the classification for bipartite

states. This classification is summarized in Fig. 1, where for the bipartite case,

only the classes S, PBE, NBE, D, and G-DC are meaningful. The multiparty case

offers a much richer classification: the states ρA1···AN B1B2 that are distillable in the

A1 · · ·AN : B1B2 split, can in this case be divided into the following four classes:

(1) LO-DC class: This class contains states that can be used for dense coding even

when the Bobs are separated and they do not even communicate classically.

Precisely, they are those for which

CLO > log2 dA1
+ log2 dA2

+ · · · + log2 dAN
, (25)
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i.e. for which S(ρB1) + S(ρB2) > S(ρA1A2···AM B1) + S(ρAM+1AM+2···AN B2).

(2) LOCC-DC class: This class contains states that are useful for dense coding when

the two Bobs are separated, but they are allowed to communicate classically.

So, these are states for which

CLOCC > log2 dA1
+ log2 dA2

+ · · · + log2 dAN
. (26)

Moreover, we require that the states in the LOCC-DC class to be not LO-DC.

(3) G-DC class: This class contains states that are useful for dense coding when

the two Bobs are at the same location. Therefore, for these states

CG > log2 dA1
+ log2 dA2

+ · · · + log2 dAN
. (27)

Again we also require that the states in the G-DC class are not LOCC-DC.

(4) D class: The final class contains the states that are distillable in the

A1A2 · · ·AN : B1B2 split, but not G-DC:

CG ≤ log2 dA1
+ log2 dA2

+ · · · + log2 dAN
. (28)

7.1. Examples

We will now give examples for all the above classes. We have already shown that

the Werner states provide examples of states which are distillable, and yet are not

useful for dense coding. Similar examples exist for GHZ states 27 admixed with

white noise: p|GHZ〉〈GHZ| + (1 − p)I⊗n/2n where |GHZ〉 = (|0〉⊗n + |1〉⊗n)/
√

2.

There also exist states by which dense coding is possible only when the receivers

(B1 and B2) are together. An example of such a state is

1

2
(|0000〉+ |0101〉+ |1000〉+ |1110〉) (29)

from Ref. 28. Here the first two parties are senders and they perform the unitary

operations. Then the first party sends her part of the multiparty state to the third

party, while the second one sends her part to the fourth party. For this state,

CG > log2 dA1
+ log2 dA2

+ · · · + log2 dAN
but the upper bound of CLOCC in Eq.

(21) is less than log2 dA1
+log2 dA2

+· · ·+log2 dAN
(with N = 2 and dA1

= dA2
= 2).

Let us now consider the four-qubit GHZ state, namely (|0000〉 + |1111〉)/
√

2.

We will now show that this state is useful for dense coding, even when the re-

ceivers are restricted only to LOCC operations. However the capacity CLO of

the GHZ state is vanishing, since its two-particle local density matrices are sep-

arable. Suppose therefore that the four-qubit GHZ state (ignoring normalization)

|GHZ4〉A1A2B1B2 = |0000〉+ |1111〉 is shared by four far-apart partners A1, A2, B1,

and B2. A1, A2 perform the unitary operations I, σx, σy , σz (σx, σy , σz are the

Pauli matrices), with equal probabilities. Then A1 sends her qubit to B1 and A2 to

B2. B1 and B2 then share the states {|ψi〉}8
i=1, of the eight orthogonal states with
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equal probabilities, given by

|ψ1,2〉 = |00〉B1 |00〉B2 ± |11〉B1 |11〉B2 ,

|ψ3,4〉 = |00〉B1 |10〉B2 ± |11〉B1 |01〉B2 ,

|ψ5,6〉 = |10〉B1 |00〉B2 ± |01〉B1 |11〉B2 ,

|ψ7,8〉 = |10〉B1 |10〉B2 ± |01〉B1 |01〉B2 ,

(30)

where the smaller index on the lhs corresponds to the upper sign on the rhs. For the

decoding (by LOCC between B1 and B2), B1 begins by making a measurement with

the projectors P0 = |00〉 〈00|+ |11〉 〈11|, P1 = |01〉 〈01|+ |10〉 〈10| and communicates

the result to B2. If P0 (P1) clicks, then they know that the state is among |ψi〉 , i ∈
{1, 2, 3, 4} (|ψi〉 , i ∈ {5, 6, 7, 8}). Now B2 performs a measurement with the same

projectors P0, P1. Depending on the outcome, they know that the state they share is

either |ψ1,2〉, or |ψ3,4〉, or |ψ5,6〉, or |ψ7,8〉. Note that none of the above measurements

disturbs the shared state. Lastly, performing a measurement in {|00〉 ± |11〉} or

{|01〉 ± |10〉} basis (depending on the outcomes in the previous measurements) by

both the Bobs on their respective sides, will help them to locally distinguish the

state perfectly. The above protocol for dense coding and the upper bound in Eq.

(21), imply that CLOCC = 3, for the four-qubit GHZ, which is therefore LOCC-DC.

An example for which the capacity CLO is non-zero is |ψ−〉A1B1 ⊗ |ψ−〉A2B2 . It

is actually non-zero for tensor product of any two bipartite states ρA1B1 and ρA2B2 ,

which are independently useful in dense coding with a single sender and a single

receiver, i.e. for which C(ρA1B1) + C(ρA2B2) > log2 dA1
+ log2 dA2

.

The boundary between LO-DC and LOCC-DC states is given by CLO =

log2 dA1
+ log2 dA2

+ · · · + log2 dAN
. For four qubit states, with two senders and

two receivers, the boundary is given by CLO = 2. Now for the state |ψ−〉 ⊗ |ψ−〉,
we have CLO = 4, so that it is far from the boundary. (It actually possesses the

maximal dense coding capacity reachable by any four qubit state with two senders

and two receivers.) Consequently, by continuity, one can argue that this state will

remain away from the boundary even after admixture of sufficiently small amount

of noise. This implies that the LO-DC class has a nonzero measure. A similar way

of arguing is possible for all other examples corresponding to the different classes

considered above. In particular, the LOCC-DC class can be proven to be of nonzero

measure by considering noise admixture to the four qubit GHZ state.

7.2. Convexity of the classes

Now we consider the question of convexity of the boundaries between the shells

considered in Fig. 1. Separable states form a convex set. So do the states with

positive partial transpose (PPT), i.e. separable and PPT bound entangled states,

since adding two PPT states never gives a state whose partial transpose is non-

positive. It was shown in Ref. 29 that the boundary between the NBE and D shells

is not convex, if a certain NBE state exists (see also 30). The D to G-DC boundary

is convex since the conditional entropy S(ρAB) − S(ρB) is a concave function 31.
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The LOCC-DC to LO-DC boundary is convex due to the same reason, as it is the

sum of two convex quantities, viz. the two single receiver capacities. However the

convexity of the G-DC to LOCC-DC boundary is not known.

8. Discussion

In this paper, we have introduced dense coding protocols for multipartite states

where all the parties are far apart. We have considered two types of schemes: one

with several senders and a single receiver, and another with several senders and

two receivers who are allowed to perform only local operations. In the first case, we

found the exact capacity of the channel while in the latter case, we provide a useful

upper bound. In the latter case, we have also shown that the GHZ state achieves the

upper bound. These two protocols help us to classify multipartite states from the

point of view of usefulness for dense coding. In the bipartite case, this classification

is complete. We know that separable states as well as bound entangled states are

not useful for dense coding, while highly distillable states are good for it. There

exist some distillable states which are not useful for dense coding. However in

the multipartite situation, several questions remain open, both for one and two

receiver(s). For example, we do not know whether multipartite bound entangled

states are useful in such schemes. Let us consider the “unlockable” bound entangled

state

ρS =
1

4

∑

i

|ψi〉〈ψi| ⊗ |ψi〉〈ψi| (31)

of Ref. 32, where the |ψi〉s are the Bell states. Let ρS be shared between A1, A2, B1,

B2. ρS is separable in all two party by two party splittings, although it has one bit

of entanglement in all one party by three party splittings. One can check by using

Eq. (23) that the CG of ρS is not greater than 3 bits, but exactly equal to 3 bits,

when A1, A2, B1 are senders and B2 is the receiver. Since all its two party by two

party splittings are separable, it is clear that it will never be useful for dense coding

with two receivers. We have also checked our formulas for other bound entangled

states, e.g. the bound entangled states formed from the unextendible product bases
33, and they are not useful for dense coding either.

In this paper, we have considered distributed communication protocols, where

the senders are only allowed to perform unitary operations. This case is more in-

teresting from the perspective of a real implementation. However the Holevo-like

upper bound 13 on accessible information holds for any encoding (as well as de-

coding) operation. So, it is also interesting to consider general encoding protocols,

and obtain upper bounds on distributed communication rates in this case. For the

latest development of this general case in a situation, where there is only a single

sender and a single receiver, see e.g. 5,6. In this paper, it is always assumed that

the transmission channel is noiseless, even if the shared states that we use as our

resource may be noisy. Even in the case of such noiseless channels, we show that

the states that we require in such communication are highly entangled. It would be
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interesting to study the dense coding capacity of noisy states in the realistic case

of noisy channels.
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