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In quantum mechanics the statistics of the outcomes of a measuring apparatus is
described by a positive operator valued measure !POVM". A quantum channel
transforms POVMs into POVMs, generally irreversibly, thus losing some of the
information retrieved from the measurement. This poses the problem of which
POVMs are “undisturbed,” i.e., they are not irreversibly connected to another
POVM. We will call such POVMs clean. In a sense, the clean POVMs would be
“perfect,” since they would not have any additional “extrinsical” noise. Quite un-
expectedly, it turns out that such a “cleanness” property is largely unrelated to the
convex structure of POVMs, and there are clean POVMs that are not extremal and
vice versa. In this article we solve the cleannes classification problem for number n
of outcomes n!d !d dimension of the Hilbert space", and we provide a set of either
necessary or sufficient conditions for n"d, along with an iff condition for the case
of informationally complete POVMs for n=d2. © 2005 American Institute of
Physics. #DOI: 10.1063/1.2008996$

I. INTRODUCTION

The new quantum information technology1 has resurrected the interest in the theory of quan-
tum measurements2 and quantum open systems,3,4 shifting the interest from applications to high-
sensitivity and high-precision experiments5 to its use in quantum information processing.6 De-
pending on the particular kind of quantum processing—e.g., teleportation,7,8 entanglement
detection,9 and distillation10—that are used in quantum computation1,6 and quantum
cryptography,11 various new types of quantum measurements are now needed. The theory for
engineering new quantum measurements optimized according to given criteria has been pioneered
since the late 1960s by many authors12 who concurred to the making of the quantum estimation
theory,13 the ancestor of the modern quantum information theory.

The general strategy of quantum estimation theory is to optimize the output statistics of the
measuring apparatus according to a given criterion/fidelity, which depends on the specific use of
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the measurement, the outcome statistics of the measurement for all possible input states being
described by a positive operator valued measure !POVM".13 POVMs form a convex set, where
convex combinations correspond to random choices among different apparatuses. Most optimiza-
tion problems actually resort to minimize a concave function on such a convex set, thereby
optimization can be restricted to its extremal points, where concave functions attain their mini-
mum. Coincidentally, due to the specific form of the optimization function, in many applications
the optimal POVMs turn out to have unit rank—e.g., for phase estimation on pure states13,14—and
this has led to the widespread belief that optimality is synonym of rank-one, whereas for suffi-
ciently large dimension, and typically for optimization with input mixed states, the rank of ex-
tremal POVMs can be easily larger than one, as shown in Refs. 15–17.

In a specific application the optimal POVM does not necessarily attain the whole accessible
information. At first sight, this assertion may appear contradictory: how a POVM can be optimal,
if it wastes accessible information? However, once the measurement is performed, no other pos-
sibility for optimization is left apart from the processing of the outcome—postprocessing for
short—and, being purely classical, the postprocessing cannot generally achieve the same result of
a preprocessing by a quantum channel. The situation is depicted in Fig. 1. Clearly, the prepro-
cessing can change the POVM irreversibly, reducing the information from the measurement. On
the other hand, it is possible that a POVM optimal for a given criterion is obtainable from another
cleaner one via an irreversible preprocessing as in Fig. 1!b". This means that in some cases we
need to give up some quantity of information for the quality of the information.

The above-mentioned scenario poses the problem of which POVMs are “undisturbed,”
namely are not irreversibly connected to another POVM. We will call such POVMs clean—in a
sense a clean POVM would be “perfect,” since it would not have any additional “extrinsical”
noise, or it has lost no information irreversibly. Quite surprisingly, as announced, in this article we
will see that the cleanness property of the POVM is largely unrelated to its extremality, and there
are clean POVMs that are not extremal and vice versa. The problem of classifying clean POVMs
turns out to be more difficult than that of classifying extremal ones, and in this article we will give
a complete classification of clean POVMs only for a number n of outcomes n!d, whereas for
n"d we will give a set of interesting necessary conditions, and an iff condition for the case of
informationally complete POVMs for n=d2. Clearly, the need for a number of outcomes n"d can
be required by the particular optimization problem !see, e.g., Refs. 18 and 19", however, no more
than n=d2 elements are needed, which is the maximum number of outcomes for extremality.15

Davies20 proved d2 to be an upper bound for the maximal cardinality of the POVM needed to
attain the accessible information, and still it is debated if d2 outcomes are actually needed !the
cases of Refs. 18 and 19 proved that the lower bound is actually larger than d". This difficulties
reflect those in classifying cleanness for n"d. In a sense it is clear that d2 elements are needed to
retrieve the accessible information, when the kind of information needs to be decided after the
measurement has been performed. Indeed, an extremal POVM with d2 outcomes is versatile to any
kind of information encoding, as it is “informationally complete,”21 namely it makes it possible to
estimate any ensemble average by changing only the data processing of the outcomes !such an
extremal measurement with d2 elements can be proved to exist for any dimension d15". Clearly, for
an extremal informationally complete measurement, a further optimization step can be achieved at
the level of data processing,22,23 once the kind of information of interest has been decided. Thus,

FIG. 1. There are two ways of processing POVMs: !a" the postprocessing of the output data and !b" preprocessing of the
input state by a quantum channel. The postprocessing cannot generally achieve the same result of a preprocessing: the
postprocessing is purely classical, whereas the preprocessing is quantum.
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the postprocessing of the measurement is still a useful tool in retrieving the right information from
a measurement.

The article is organized as follows. After introducing some notations and prerequisites in Sec.
II, in Sec. III we state some general results about channels and POVMs which will be used
throughout the article. In Sec. IV we analyze the convex set of channels connecting two POVMs.
Section V is devoted to a complete analysis of the classical postprocessing, and give a complete
characterization of “cleanness” under postprocessing. Section VI addresses the problem of the
preprocessing ordering of POVMs, namely if a POVM is “cleaner” than another, and when they
are “equivalent,” which corresponds to the possibility of reversing the action of the channel
connecting the two POVMs. Section VIII shows that for dimension d=2 equivalence under clean-
ness is the same as unitary equivalence. Section IX fully solves the case of number of outcomes
n!d, and gives some interesting alternative theorems for the case of effects, namely the two-
outcome POVMs. Section X analyzes the case of informationally complete POVMs, giving also
an iff condition characterizing the clean POVMs. Section XI gives some conditions for rank-one
measurements. Finally, we conclude the paper in Sec. XII with a list of most relevant results and
of the main open problems.

II. NOTATION AND PREREQUISITES

Throughout this article we will consider a quantum system with Hilbert space H with finite
dimension d=dim!H", and denote by S the set of states on H !corresponding to a positive unit-
trace operator on H", and by B!H" the algebra of bounded operators on H. We will use capital
script fonts e.g., A ,B , . . ., to denote operator algebras in B!H", and with the symbol A! we will
denote the commutant of A, namely the algebra defined as A!! %Y !B!H" & #X ,Y$=0,X!A'.
Completely positive trace-preserving !CPT" and identity-preserving maps on S and B!H",
respectively—all generally referred to as channels—will be denoted by capital calligraphic letters,
e.g., A ,B , . . ., whereas we will always use capital Roman letters for operators. We will restrict
attention to POVMs %Pe'e!E with finite sampling space E, namely

Pe # 0, ∀ e ! E, (
e!E

Pe = I . !1"

We will extensively use the vector notation P)%Pe', E!P" denoting the sampling space of P, and
&P& the cardinality of E!P". The vector notation will be naturally extended to tensor products—e.g.,
P " Q for the POVM %Pe " Qf'e!E!P",f!E!Q" on H " H—and to functionals—e.g., Tr#$P$ for the
vector of probabilities Tr#$Pe$. By Span!P" we will denote the linear operator space spanned by
the POVM elements %Pe'e!E!P", and by Rng!P" the range of the POVM P, which is defined as the
following convex subset of R+

&P&

Rng!P" ! %R+
&P& " p = Tr#$P$, $ ! S' . !2"

The convex set of POVMs with cardinality N will be denoted by PN.
Finally, we will use the symbol &A** to denote the following bipartite vector in H " H

&A** ! (
m,n=1

d

Am,n&m*&n* , !3"

where A!B!H" is the operator corresponding to the d%d matrix with elements Am,n on the basis
%&n*'. One can easily verify the following useful identities

A " BT&C** = &ACB** ,

Tr1#&A**++B&$ = ATB*, !4"
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Tr2#&A**++B&$ = AB†,

where XT denotes the transpose in the basis %&n*', while X* is the complex conjugate in the same
basis. Tri denotes the partial trace on the ith space.

III. USEFUL LEMMAS ABOUT CHANNELS AND POVMs

In the following we will name a map E spectrum-width decreasing when it reduces the
“spectral width” of a real symmetric operator X, namely when

#&m!E!X"",&M!E!X""$ ! #&m!X",&M!X"$ , !5"

&M!X" and &m!X" denoting the maximum and minimum eigenvalues of X, respectively.
Lemma III.1: Channels are spectrum-width decreasing.
Proof: Consider the eigenvector &' j* of E!X" corresponding to the eigenvalue & j!E!X"". One

has

& j!E!X"" = Tr#E!X"&' j*+' j&$ = Tr#XET!&' j*+' j&"$ ! #&m!X",&M!X"$ , !6"

since the dual map ET is CPT. #
Notice that in the above-mentioned lemma the identity-preserving condition is crucial, since

the lemma would not hold for a CPT map E, e.g., E!$"= &'*+'&, and the spectral width increases
from #&m!$" ,&M!$"$ to #0, 1$.

The inverse of a non-unitary invertible channel is necessarily not completely positive.
Theorem III. 2 (Wigner): Any invertible channel has CP inverse iff it is unitary.
Proof: Let E1 and E2 be two channels such that E2

T $E1
T!$"=$. Hence:

&'*+'& = (
ij

BjAi&'*+'&Ai
†Bj

†, ∀ &'* , !7"

where Ai and Bj are canonical Kraus representations for E1 and E2, respectively. Since all terms in
the sum are positive, this means that BjAi&'*=(ij

'&'*, for all &'* and all i , j. By linearity, it is clear
that (ij cannot depend on &'*, implying that BjAi=(ijI, for all i , j.

We can now prove that (ij#0, for all i , j. Otherwise, there exists a couple of operators Bk and
Al for which BkAl=0. These two operators must both be noninvertible, since, if one is invertible,
the other has to be null, and we can without loss of generality !w.l.o.g." drop it from the Kraus
representation !7". Let us fix the couple k , l for which BkAl=0, namely both are not invertible.
Now, the only possibility to have BjAi=(ijI for all i , j is that BkAi=0 for all i !since Bk is not
invertible, whence necessarily BkAi cannot be full rank", and analogously BjAl=0 for all j. In this
case, all Bj’s supports would be forced to be contained in the orthogonal complement to the range
of Al !which is strictly contained in the full Hilbert space", and this would be in contradiction with
the normalization condition ( jBj

†Bj = I. Therefore, (ij#0 for all i , j, and the operators Ai and Bj
are all invertible. This allows us to write

Bj = (ijAi
−1, ∀ j ,

!8"
Ai = (ijBj

−1, ∀ i ,

whence all Bj’s are proportional to each other, and analogously for the Ai. In other words, the
Kraus representations of E1 and E2 are made of only one operator. This means that E1 and E2 are
unitary, one the inverse of the other.

The converse direction is trivial. In Corollary X.4, we will prove that the inverse map of an
invertible nonunitary channel is indeed nonpositive. #

Theorem III.3 (Chefles, Jozsa, Winter): Consider two sets of pure states on H with the same
cardinality. There exist two channels mapping the elements of the first set to the corresponding
elements of the second set and vice versa, iff the two sets of states are unitarily equivalent.
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Proof: See Ref. 24. #
Lemma III.4. (Lindblad): A channel E stabilizes an algebra S!B!H", namely

E!X" = X, ∀ X ! S , !9"

iff the operators %Ek' of any Kraus form E!X"=(kEk
†XEk belong to the commutant S! of the

algebra S.
Proof: See Ref. 25. #
Finally let us state some results about extendiblity of completely positive maps !mostly taken

from Ref. 26". To this end let us consider a linear subset S of B!H" which contains the identity and
is closed under adjoints—each set S of this type will be called in the following an operator
system. It is easy to see that S is generated !as a linear space" by its positive elements. It makes
therefore sense to speak about positive maps E :S→A into an algebra A and we can define also
complete positivity in the usual way. Now the question arises whether such an E can be extended
as a completely positive map to B!H". The following theorem gives a positive answer !Ref. 26,
Theorems 6.2 and 7.5":

Theorem III.5. (Arveson’s extension theorem): Each completely positive map E :S
→B!H" defined on an operator system S"B!H" can be extended to a completely positive map on
B!H".

If E is only positive !and not necessarily completely positive" a similar result is not available
!cf. the corresponding discussion in Sec. VII". An important exception arises however, if the
algebra A is abelian !Ref. 26, Theorem 3.9".

Theorem III.6: If E :S→A is positive, S an operator system and A an abelian algebra, the
map E is completely positive.

IV. THE CONVEX SET OF CHANNELS CONNECTING TWO POVMs

We now analyze the convex set of channels connecting two given POVMs P and Q, in
equations

CPQ = %E channel&E!P" = Q' . !10"

The extremal elements of CPQ can be characterized in terms of the operators %Ei' of the canonical
Krauss decomposition by the following theorem.

Theorem IV.1: The map E!CPQ is extremal iff for some element Pk of the POVM P the
operators %Ei

†PkEj'ij made with the canonical Kraus operators %Ei' of the map are linearly inde-
pendent.

Proof: First we show by contradiction that the condition is sufficient. In fact, suppose that E,
with %Ei

†PkEj'ij linearly independent, is not extremal in CPQ. Then there exist two different chan-
nels E±!CPQ such that

E = 1
2 !E+ + E−" . !11"

Upon defining P)E+−E, clearly one has P!P"=0 and E±P=E±, which are channels. Then RE±
)RE±RP#0, where for any channel E the positive operator RE in linear correspondence with E is
defined as RE=( j&Ej**++Ej& for %Ej' Kraus operators of E.27 This implies that
Supp!RP"!Supp!RE", namely there exists a nonvanishing matrix pij such that RP
=(ijpij&Ei**++Ej&. As a consequence we have

P!Pk" = (
ij

pijEi
†PkEj = 0, ∀ k . !12"

This contradicts the hypothesis. The proof that it is also necessary is now straightforward. Suppose
indeed that the operators %Ei

†PkEj'ij are linearly dependent. Then there exists a nonvanishing
matrix of coefficients aij such that (ijaijEi

†PkEj =0 for all k. If we define pij =)!aij +aij
* ", then the

map P!X"=(ijpijEj
†XEi will annihilate all elements of the POVM P, namely P!P"=0. Moreover,
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for a sufficiently small )#0 both maps E±=E±P will be channels and will belong to CPQ. This
implies that E= 1

2 !E++E−", namely E is not extremal. #
One can prove that either any element of the border of CPQ is also an element of the border of

the full convex set of channels, or CPQ)%E'. This comes from the definition of the border of a
convex set

Definition IV.2: For a convex set C, an element p!C belongs to its boundary $C if and only
if there exists q!C such that

p + *!q − p" ! C, p − *!q − p" # C, ∀ * ! #0,1$, . !13"

or, equivalently iff there exists q!C such that for all *"0 for which p+*q!C then p−*q#C.
We will now prove the following lemma.
Lemma IV.3: The border of the convex CPQ is a subset of the border of the convex of all

channels.
Proof: Consider a channel E!CPQ and a “perturbation” P such that E+*P!CPQ∀*! #0, 1$.

By definition P!Pi"=0 for all Pi, whence, if E−*P is completely positive, then it necessarily
belongs to CPQ. Therefore, the only way to have E on the border of CPQ is to have E−*P not CP,
namely E lies on the border of the convex of all channels. #

A “geometrical” proof is also the following. Since the constraint defining CPQ is linear, then
CPQ is a linear section of the convex of all channels, whence its border belongs to the border of the
convex of all channels.

Remark: Notice that the convex set CII will coincide with that of all channels, I= %I' denoting
the trivial POVM.

Remark: From Lemma IV.3 it follows that when two POVMs are connected by a channel they
can be always connected by a border channel, apart from the case in which the connecting channel
is unique.

V. POSTPROCESSING

The most general postprocessing of a POVM, is a shuffling of the POVM elements with
conditional probability p!i & j", corresponding to the mapping

Qi = (
j

p!i&j"Pj . !14"

When two POVMs P and Q are connected by a mapping of the form !14" for some conditional
probability p!i & j" we will write P$pQ, and say that the POVM P is cleaner under
postprocessing—for short postprocessing cleaner—than the POVM Q. Notice that a relation of
the form !14" is meaningful generally for &P&# &Q&, with the number of outcomes changing from
input to output.

Relevant examples of post processing are:

!i" identification of two outcomes, e.g., j and k are identified with the same outcome l, corre-
sponding to p!n & j"=+ln, p!n &k"=+ln and

!ii" permutation , of outcomes, corresponding to p!,!j" &k"=+ jk.

The relation $p is a pseudo-ordering, since it is

!i" reflexive, corresponding to

P$pP, p!i&j" = +ij; !15"

!ii" transitive, i.e., P$pQ$pR, corresponding to

Ri = (
j

p!i&k"Qk, Qk = (
j

p!!k&j"Pj, ⇒ Ri = (
j

p"!i&j"Pj ,
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p"!i&j" = (
k

p!i&k"p!!k&j" . !16"

An equivalence relation under postprocessing can be defined as follows.
Definition V.1: The POVMs P and Q are postprocessing equivalent—in symbols P,pQ—iff

both relations P$pQ and Q$pP hold.
We are now in position to define cleanness under postprocessing, namely
Definition V.2: A POVM P is postprocessing clean if for any POVM Q such that Q$pP, then

also P$pQ holds, namely P,pQ.
The characterization of cleanness under postprocessing !classical" is much easier than that of

cleanness under preprocessing !quantum", and is given by the following theorem.
Theorem V.3: A POVM P is postprocessing clean iff it is rank-one.
Proof: First notice that a POVM P with elements having rank higher than one are not post-

processing clean. In fact, in this case one can diagonalize all the POVM elements and consider the
POVM P! made of rank-one projections over all eigenvectors multiplied by the corresponding
eigenvalue. Then, clearly P!$pP by identification of outcomes. In equations

Pi = (
ki

&&ki

!i"*+&ki

!i"&, Pi,k! = &&k
!i"*+&k

!i"&, ⇒ P!$pP , !17"

corresponding to the identification of outcomes

p!i&j,kj" = +ij ∀ kj . !18"

Reversely, all rank-one POVMs are postprocessing clean, namely if Q$pP, then also P,pQ must
hold. In fact, suppose that P is rank one and that there exists a POVM Q such that Q$pP, namely

Pi = (
j

p!i&j"Qj . !19"

Now, since all elements Pi are rank one, the elements Qj are necessarily proportional to Pi for all
the indices j such that p!i & j"#0, namely also Q is rank one, with

p!i&j"Qj = - jPi, !20"

with ( j- j =1, and - j #0. For a fixed j, p!i & j"=0 for at least one i, otherwise all the Pi’s would be
proportional. For the same reason, for a fixed i, p!i & j"=0 for at least one j. We can then collect the
indices i such that p!i & j"#0 in the set I!j", and write

Qj = (
i

p!i&j"Qj = (
i!I!j"

p!i&j"Qj = (
i!I!j"

- jPi. !21"

Finally, it is immediately verified that

q!j&i" = -- j , i ! I!j"
0 otherwise

. !22"

is a conditional probability since for all i one has ( jq!j & i"=( j- j =1. Therefore, from Eq. !21" it
follows that we have also P$pQ, namely P,pQ. #

VI. PREPROCESSING: ORDERING AND EQUIVALENCE OF POVMs

The action of channels allows to define the following pseudo-ordering.
Definition VI.1: Given the POVMs P and Q with &P&= &Q& we define P$Q iff there exists a

channel E such that

Q = E!P" , !23"
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and we will say that the POVM P is cleaner than the POVM Q.
Definition VI.2: We call a POVM P “clean” iff for any POVM Q such that Q$P one also has

P$Q.
It is easily proved that the relation $ is transitive and reflexive, namely it is a pseudo-

ordering. Let us now define the following relation
Definition VI.3: We say that the two POVMs P and Q are equivalent—denoted as

P,Q—when one has both P$Q and Q$P.
Clearly , is an equivalence relation. The pseudo-ordering $ now defines a partial ordering

between equivalence classes. Indeed define the ordering between classes as follows:

#P$ # #Q$ iff P! $ Q!, ∀ P! ! #P$, Q! ! #Q$ . !24"

The above-mentioned ordering is consistently defined, since P! ,P"! #P$ means both P!$P" and
P"$P!, whence, by transitivity P"$P!$Q!$Q", and the ordering does not depend on the
chosen elements of the equivalence classes. This proves the consistency of the definition of #.
Therefore, in the following we can consider a single element P instead of the class #P$. In this way
we can easily prove reflexivity #P$# #P$, since P$P, and transitivity

#P$ # #Q$, #Q$ # #R$ ⇒ #P$ # #R$ , !25"

since P$Q, Q$R implies P$R by transitivity of $. Now let us consider the case when both
#P$# #Q$ and #Q$# #P$. Then we have P$Q and Q$P, namely #P$)#Q$. #

One would be tempted to conjecture that the relation , is equivalent to unitary equivalence,
which is defined through

Definition VI.4: The POVMs P and Q are unitarily equivalent, for short P,UQ iff there exists
a unitary operator U such that Q=UPU†.

However, as we will see in the following, there exist equivalent POVMs which are not
unitarily equivalent.

We have now the following necessary condition for equivalence under preprocessing
Theorem VI.5: If P,Q then for each event e!E!P" we have

&M!Pe" = &M!Qe" ) &M!e", &m!Pe" = &m!Qe" ) &m!e" . !26"

Proof: By Lemma III.1 we have both &M!Pi"#&M!Qi" and &M!Pi"!&M!Qi", and similarly for
the minimum eigenvalues. #

VII. PREPROCESSING: POSITIVE MAPS AND RELATED THEOREMS

There are two interesting variants of the relation $ just introduced, which help to get a more
geometric insight into the structure. The first arises, if we replace the completely positive map E
in Definition VI.1 by positive !but not necessarily completely positive" one. Hence we can define
for two POVMs P, Q with &P&= &Q&

P . Q ⇔ Q = E!P", E positive. !27"

It is obvious that P$Q implies P.Q but the other way round does not hold. This can be seen,
if we consider an informationally complete POVM P and define Q=/!P", where / denotes the
transposition map !i.e. /!A"=AT". Positivity of / implies P.Q. But / is only positive and not
completely positive and it is the only map which connects P and Q. The latter follows from
informational completeness of P, because this implies that the elements of P are a basis of B!H".
Hence P$Q does not hold.

Now consider the ranges Rng!P", Rng!Q" of P and Q, defined in Eq. !2". If p!Rng!Q"
there is by definition a density operator $ with p=Tr#Q$$. Hence, P.Q implies

p = Tr#Q$$ = Tr#E!P"$$ = Tr#PET!$"$ !28"

and therefore we get p!Rng!P". This observation motivates the definition:
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P#rQ ⇔ Rng!Q" " Rng!P" . !29"

According to our previous discussion we get in this way a hierarchy of relations

P $ Q ⇒ P . Q ⇒ P#rQ . !30"

We have already seen that the direction of the implication between $ and . cannot be reversed.
For . and #r this is more difficult. To see that they are !very" closely related, consider the linear
hull Span!P" of the elements of P, which is obviously an operator system !cf. Sec. III". Hence we
can speak about positive linear maps from Span!P" to Span!Q". This fact can be used to
characterize the relation #r in the following way.

Proposition VII.1: Consider two POVMs P, Q with &P&= &Q&. Then the following statements are
equivalent:

(i) P#rQ
(ii) There is a (unique) positive map E: Span!P"→Span!Q" with E!P"=Q.

Proof: The implication !ii"⇒ !i" is trivial. Hence consider only the other direction. Here, the
idea is to define the map E by

E!Pe" = Qe, ∀ e ! E . !31"

This map is well defined because we have !by assumption" for each density operator $ a second
density operator 0 such that Tr#Qe$$=Tr#Pe0$ holds for all e!E. Hence if (e&ePe=0 for some
real &e we get

(
e!E

&eTr#$Qe$ = (
e!E

&eTr#0Pe$ = Tr/0 (
e!E

&ePe0 = 0. !32"

Since $ is arbitrary this implies (e&eQe=0. Therefore E defined in !31" is well defined, as stated.
Using the same reasoning we can show that E is positive, which concludes the proof. #

The difference between condition !ii" of this lemma and the definition of . in Eq. !27" is the
domain of the the map E. The following counter example which is taken !in a slightly modified
form" from Ref. 26 shows that such a map is in general not extendible as a positive map to B!H".

Consider the diagonal 4%4 matrix X=diag!1, i ,−1 ,−i" and the operator system S spanned by
I ,X ,X†. It is easy to see that a general element A=aI+bX+cX† is Hermitian iff c=b* and a=a*

hold, and it is positive iff in addition a#2 max!&Rb& , &Ib&" hence,

A # 0 ⇒ c = b*, a # 12&b& . !33"

Now consider the linear map

S " A = aI + bX + cX† ! E!A" = 2 a 12b
12c a

3 " I2, !34"

where I2 denotes the 2%2 unit matrix. Since a 2%2 matrix is positive iff its diagonal elements
and its determinant are positive, positivity of E follows directly from Eq. !33". On the other hand
we have 4E!I"4=1 and 4E!X"4=12. Since 4X4=1 this implies 4E4#12" 4E!I"4. But a positive map
from a C* algebra A into a a C* algebra B always satisfies !Ref. 26, Corollary 2.9" 4E4= 4E!I"4.
Hence the map defined in Eq. !34" can not be extended to B!C4"—not even to the abelian algebra
generated by I ,X ,X†. As a consequence of this reasoning we have shown that P#rQ does not
imply P.Q.

Hence positive maps can in general not be extended as a positive map to a bigger algebra. A
very important special case arises, however, if the map E is completely positive. In this case a
completely positive extension always exists !cf. Theorem III.5" This fact can be used along with
Proposition VII.1 to get an interesting characterisation of $ in terms of ranges.
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Theorem VII.2: Consider two POVMs P, Q with &P&= &Q&. Then the following statements are
equivalent:

(i) P$Q
(ii) There is an informationally complete POVM M such that P " M#rQ " M
(iii) P " M#rQ " M holds for all POVMs M.

Proof: The implication !i"⇒ !iii" follows from the fact that !i" implies the existence of a map
E such that Q=E!P", and trivially the map E " I connects P " M with Q " M, whence the state-
ment via Eq. !29". Implication !i"⇒ !ii" is just a special case of the previous one. Implication
!iii"⇒ !ii" is trivial. Hence only !ii"⇒ !i" remains to be shown.

To this end note that informational completeness of M implies

Span!Q " M" = Span!Q" " B!H" , !35"

and similarly for P " M. Therefore we have #according to !ii" and Proposition VII.1$ a unique
positive map

F:Span!P" " B!H" → Span!Q" " B!H" !36"

with

F!P " M" = Q " M . !37"

If we can show that F has the form

F = E " I !38"

with a positive map E: Span!P"→Span!Q" and the identity I on B!H", the theorem is proved
because:

• Due to Eq. !38" and positivity of F the map E is completely positive as a map on the operator
system Span!P". Hence by theorem III.5 it is extendible to a completely positive map on
B!H".

• Eqs. !37" and !38" imply E!P"=Q and therefore P$Q.

To prove Eq. !38" firstly note that !ii" implies P#rQ. This follows from !with e!E!Q" and a
density matrix $ on H":

Tr#$Qe$ = Tr/$ " I

d 2Qe " (
f!E!M"

Mf30 !39"

= (
f!E!M"

Tr/!Qe " Mf"2$ "
I

d
30 !40"

because we have by assumption a density matrix 0 on H " H such that

Tr/!Q " M"2$ "
I

d
30 = Tr#!P " M"0$ !41"

which in turn implies

Tr#$Qe$ = (
f!E!M"

Tr#!Pe " Mf"0$ !42"

=Tr/Pe " 2 (
f!E!M"

Mf300 !43"

082109-10 Buscemi et al. J. Math. Phys. 46, 082109 "2005!

Downloaded 21 Aug 2005 to 193.206.67.243. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



=Tr#!Pe " I"0$ = Tr#Pe Tr2 0$ , !44"

where Tr2 denotes the partial trace over the second tensor factor. Hence Tr#$Q$=Tr#!Tr20"P$
which implies P#rQ as stated.

Now we can apply again Propostion VII.1 and get a positive map E: Span!P"→Span!Q"
satisfying E!P"=Q and therefore E " I!P " M"=Q " M. Since F is uniquely determined by Eq.
!37" this implies F=E " I, which completes the proof. #

This theorem gives a clear geometric picture for the relation $ and it helps to understand the
difference between $ and .: if P.Q holds we find for each separable state $ on H " H a second
separable state 0 such that Tr#Q " M$$=Tr#P " M0$. Hence, if P$Q does not hold !but P.Q"
there must be an entangled state $ such that the probability vector Tr#Q " M$$ can not be repro-
duced by any expectation value of P " M. This can be rephrased as follows: If P.Q holds but not
P$Q we can reproduce the distribution of outcomes of Q measurements on one system by
appropriate P measurements, but there is information about entangled states which can be gained
only by Q and not by P.

A second special case of Proposition VII.1 arises, when Q is abelian !i.e., all elements of the
POVM commute". In this case the map E constructed in Proposition VII.1 is a map into an abelian
algebra and therefore completely positive. Hence we get

Theorem VII.3: Consider two POVMs P ,Q with &P&= &Q& and assume that Q is abelian. Then
P#rQ and P$Q are equivalent.

Proof: According to Proposition VII.1 there is a positive map E from Span!P" into the abelian
C* algebra A generated by the elements of Q. According to Theorem III.6 this map is completely
positive and by Theorem III.5 therefore extendible as a completely positive map to B!H". Hence
P#rQ implies P$Q. Since the other implication is trivial the proof is completed. #

Note that a similar result does not hold if P is abelian and Q is not. The counter example given
after Proposition VII.1 applies even in this case.

The result from Theorem VII.3 is very useful, in particular because the range Rng!P" of an
abelian POVM has a very simple structure, which is completely characterized by the joint eigen-
values of the elements of P. To see this, consider a joint set of eigenvectors '-, -=1, . . . ,d and

Pe = (
-=1

d

&e,-&'-*+'-&, ∀ e ! E . !45"

The joint eigenvalues vectors

$- = !&e,-"e!E ! R&P& !46"

form a set of probability vectors !in the case of joint degeneracies of the elements of P some of
them may coincide" and for each convex linear combination

p = (
-=1

d

p-$-, p- # 0, (
-

p- = 1 !47"

we can find a density operator !$=(-p-&'-*+'-& will do" such that p=Tr#$P$ holds. Hence the
convex hull of the $- satisfies conv!$1 , . . . ,$d""Rng!P". On the other hand we have for each
density operator $:

Tr#$P$ = (
-=1

d

+'-,$'-*$- !48"

which implies Tr#$P$!conv!$1 , . . . ,$d". Hence we have just shown the following proposition
Proposition VII.4: The range Rng!P" of an abelian POVM P coincides with the convex hull

of the $1 , . . . ,$d.
The most simple example arises in the case of effects, i.e., measurements with two outcomes.
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Obviously, each effect is abelian and has the form P= %P , I− P' with a positive operator P! I. If
11 , . . . ,1d are the eigenvalues of P given in decreasing order we get $-= !1- ,1−1-". Hence all
$-!R2 are located on the graph of the function R"x!1−x!R, and $1 respectively $d are the
outermost points. This leads immediately to the following characterization of the relation $ for
effects:

Theorem VII.5: The effect P is “cleaner” than the effect Q, i.e. P$Q iff

#&M!P",&m!P"$ % #&M!Q",&m!Q"$ . !49"

Corollary VII.6: Given two effects P and Q, then P,Q iff &M!P"=&M!Q" and &m!P"
=&m!Q".

VIII. PREPROCESSING: EQUIVALENCE IN DIMENSION TWO

For dimension two the cleanness equivalence , and the unitary equivalence ,U coincide.
Theorem VIII.1: For two-level systems P,Q iff P,UQ.
Proof: If all the elements of both POVM are trivial, i.e., Pe=-eI and Qe=(eI, ∀e, then the

thesis follows easily. Therefore, we will focus on the nontrivial case, in which there exists at least
one element Pi of P !or Qi of Q" that is nontrivial. Then, first, also Qi !or Pi" is not proportional
to the identity, since otherwise Pi=F!Qi"=-iF!I"=-iI, which contradicts the hypothesis. Second,
by Theorem VI.5 one has

Pi = &M!i"&2M
!i"*+2M

!i"& + &m!i"&2m
!i"*+2m

!i"& , !50"

Qi = &M!i"&'M
!i"*+'M

!i"& + &m!i"&'m
!i"*+'m

!i"& . !51"

Now, by hypothesis, there exist channels E and F such that Qi=E!Pi" and Pi=F!Qi". Then, by
linearity,

Qi = &M!i"E!&2M
!i"*+2M

!i"&" + &m!i"E!&2m
!i"*+2m

!i"&" . !52"

We will now consider

Tr#Qi&'M
!i"*+'M

!i"&$ = &M!i" = Tr#PiET!&'M
!i"*+'M

!i"&"$ , !53"

and this clearly implies that ET!&'M
!i"*+'M

!i"&"= &2M
!i"*+2M

!i"&. Analogous arguments lead to the conclu-
sion that ET!&'m

!i"*+'m
!i"&"= &2m

!i"*+2m
!i"&, and moreover FT!&2M

!i"*+2M
!i"&"= &'M

!i"*+'M
!i"& and FT!&2m

!i"*+2m
!i"&"

= &'m
!i"*+'m

!i"&. By collecting all the eigenstates of nondegenerate Pi’s and Qi’s in two sets, namely,

ET:%&'M
!i"*+'M

!i"&, &'m
!i"*+'m

!i"&'i ! %&2M
!i"*+2M

!i"&, &2m
!i"*+2m

!i"&'i

!54"
FT:%&2M

!i"*+2M
!i"&, &2m

!i"*+2m
!i"&'i ! %&'M

!i"*+'M
!i"&, &'m

!i"*+'m
!i"&'i,

and applying Theorem III.3 it follows that there exists a unitary U such that Qi=UPiU† for all
nontrivial Qi’s. Clearly, the same unitary transformation maps the trivial elements. #

IX. PREPROCESSING: CLEANNESS FOR NUMBER OF OUTCOMES nÏd

Lemma IX.1: For fixed number of elements n!d the POVM P is clean iff &M!Pi"=1 for all i.
Such condition is also equivalent to &m!Pi"=0 with multiplicity at least n−1, and each vector
which is eigenvector with unit eigenvalue for some element Pj must belong to the kernel of all
other POVM elements.

Proof: We first prove that the condition is also equivalent to &m!Pi"=0 for all i. Indeed,
consider a normalized eigenvector &u* of Pj with eigenvalue 1, and suppose by absurd that some
element Pi has &m!Pi""0. Then
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+u&u* = (
k

+u&Pk&u* = +u&Pj&u* + +u&Pi&u* + (
k#i,j

+u&Pk&u* " 1, !55"

and in order to have no contradiction one must have +u&Pi&u*=0, namely &m!Pi"=0. Notice that Eq.
!55" also implies that +u&Pk&u*=0 for all k# j, namely the same eigenvector &u* of Pj is eigenvector
of all Pk for all k# j. Moreover, since there must be at least n vectors as &u*, each being eigen-
vector of a different element Pj corresponding to unit eigenvalue, and since any two vectors must
be orthogonal !since for some j they are eigenvectors corresponding to different eigenvalues of
Pj", this means that the 0 eigenvalue for each POVM element must have multiplicity at least n
−1, and all the eigenvectors of any element with eigenvalue 1 are in the kernel of the remaining
elements.

We now prove that the condition is sufficient. Suppose that a POVM Q exists such that Q
$P. Then by Lemma III.1 %0,1'!Sp!Qi" for all i. We then need to prove that in this case P
,Q. From now on we will denote by &u*i

P an eigenvector of Pi with eigenvalue 1 and by &u*i
Q the

same for Qi. The proof is constructive: consider the map with Stinespring form E!X"=V†!I
" X"V, where

V = (
i

1Pi " &u*i
Q, !56"

and the notation T=O " &u* denotes the operator defined as T&'*=O&'* " &u* for all &'*!H. It is
clear that E!Qi"= Pi. Similarly, consider the map F!X"=W†!I " X"W, where

W = (
i

1Qi " &u*i
P. !57"

This is such that F!Pi"=Qi. We proved that POVMs P such that &M!Pi"=1 for all i are clean. We
will now prove that it is also a necessary condition. Consider indeed a generic POVM Q such that
at least for one outcome j &M!Qj"31. Then one can consider any POVM P with &M!Pi"=1 for all
i and construct the isometry

W = (
i

1Qi " &u*i
P. !58"

It is clear that the Stinespring form W†!I " X"W defines a channel E such that E!Pi"=Qi for all i.
Then P$Q. Moreover, by hypothesis &M!Pj""&M!Qj" and then it is impossible that P,Q. #

An immediate corollary is the following
Corollary IX.2: The only clean elements with n=d are the observables.
Proof: In Lemma IX.1 for n=d the iff condition is equivalent to have eigenvalue 0 with

multiplicity d−1 for each POVM element, namely each POVM element is rank one, and they are
orthogonal. #

Allowing mapping between POVMs with different number of outcomes, the situation simpli-
fies:

Theorem IX.3: For n!d outcomes the set of clean POVMs coincides with the set of observ-
ables.

Proof: Consider a generic POVM Pi with i=1, . . . ,n!d. This can be always regarded as the
preprocessing of any desired observable %&i*+i&'i=1,. . .,d. In fact, using the isometry from H to H"2

V = (
i=1

n

1Pi " &i* , !59"

the following channel expressed in the Stinespring form

M!X" = V†!I " X"V !60"

gives
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M!&i*+i&" = Pi, i = 1, . . . d . !61"

For a POVM with n3d outcomes !strictly", notice that it is equivalent to a POVM with d
outcomes and d−n vanishing elements. On the other hand, for n3d there is no channel that can
increase the number of outcomes back to d, whence a POVM with n3d outcomes cannot be
clean. For n=d Corollary IX.2 asserts that the only clean POVMs are the observables. #

X. PREPROCESSING: ORDERING OF INFORMATIONALLY COMPLETE POVMs

Lemma X.1: If the POVM Q is infocomplete then every P such that P$Q is infocomplete, too.
Proof: For d2 outcomes POVMs, P and Q are infocomplete iff their elements are linearly

independent. Suppose by absurd that there exists a nonnull vector of d2 coefficients ci such that
(i=1

d2
ciPi=0, then also

E2(
i=1

d2

ciPi3 = 0 = (
i=1

d2

ciQi = 0, !62"

which contradicts the hypothesis.
If the number of outcomes is greater than d2, suppose

E!X" = 0, !63"

for some X#0, namely E would have non trivial kernel, in which case
Span!Q"!Rng!E""B!H", which contradicts the hypothesis that Q=E!P" is infocomplete. Then
E is invertible. Now, P must be infocomplete, otherwise the inverse of E would not have full rank,
which is absurd. #

The above theorem is immediately extended to any linearly independent POVM Q. More
interestingly, for any infocomplete POVM P one can prove the following lemma

Lemma X.2: If the POVM P is infocomplete then every Q such that P,Q is infocomplete, too.
Proof: It follows immediately from definition of , and Lemma X.1. #
On the other hand, each POVM that is equivalent to an infocomplete one, is also unitarily

equivalent to it, namely, more precisely
Theorem X.3: If P is an infocomplete POVM, then P,Q iff P,UQ.
Proof: Since the POVMs P and Q must be both infocomplete by the previous lemma, then the

maps E and F are uniquely defined, and are the inverse of each other. Then, by Theorem III.2
E!X"=UXU† for some unitary U. #

An alternative elegant proof of the above theorem would be the following.
Proof: By hypothesis, there exist E and F such that E!P"=Q and F!Q"=P. This means that

F $E stabilizes the algebra generated by P, that is Span!P")B!H". On the other hand, the
commutant of an infocomplete POVM is only the identity, since #Pi ,X$=0 for all i implies
#A ,X$=(iai#Pi ,X$=0 for all A!B!H". This fact along with Lemma III.4 implies that F $E is the
identical map. The thesis is then a straightforward consequence of Theorem III.2. #

Corollary X.4: For each non unitary invertible channel E on B!H" there exists at least a pure
state '!H such that ET−1!&'*+'&"40.

Proof: Let us consider an extremal POVM with d2 rank-one elements %&-i*+-i&' i=1, . . . ,d2

!according to Ref. 15 such a POVM always exists for any dimension d, and it is necessarily
informationally complete". Assuming E invertible, let’s consider Qi=E−1!&-i*+-i&". The POVM
&-i*+-i& is clean since it is rank-one. However, since it is also infocomplete, then Qi cannot be itself
a POVM, otherwise according to Theorem X.3 it would be unitarily equivalent to &-i*+-i&. More-
over, being both &-i*+-i& and Qi infocomplete, the map E would be univocally defined, whence
itself unitary, contrarily to the hypothesis. Then, %Qi' is not a POVM. However, since the map E
is a channel, whence E−1 must be identity preserving, one has (iQi= I, then necessarily at least one
element Qj cannot be positive, namely there exists a vector '!H for which
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+'&Qj&'* 3 0. !64"

This inequality can be rewritten as follows:

Tr#&'*+'&E−1!&- j*+- j&"$ = Tr#ET−1!&'*+'&"&- j*+- j&$ 3 0, !65"

namely ET−1!&'*+'&" is not positive. #

We have also the following interesting theorem.
Theorem X.5: Every channel F which maps the set of states S surjectively on itself, i. e. such

that F!S")S, is necessarily unitary.
Proof: First, suppose that F is invertible, then F must be unitary, otherwise F−1!S"=S would

not be possible by Lemma X.4. On the other hand, if F is not invertible, then its range must have
dimension strictly smaller than d2. Now, consider a rank-one infocomplete POVM P with &P&
=d2. Clearly, some POVM element cannot belong to F!S", and this proves that F!S""S strictly,
since such normalized POVM elements are just pure states. #

For qubits this theorem has the simple geometric interpretation that the Bloch sphere trans-
formed under F−1 for any invertible non unitary F becomes an ellipsoid which contains elements
outside the Bloch sphere.

By definition, and according to Theorem X.3 an infocomplete POVM P is clean iff E−1!P" is
not a POVM for all invertible non unitary maps E. This means that as soon as the set S of states
is transformed by E−1, the POVM is able to detect at least one of the points in E−1!S"−S, say
E−1!&'*+'&", since the “probability distribution” corresponding to E−1!&'*+'&" is no longer positive.

XI. PREPROCESSING: ORDERING OF RANK-ONE POVMs

Intuitively one thinks that a rank-one POVM is clean. This is actually true, and it is more
precisely stated by theorem XI.2 in this section. In order to prove it, we first need the following

Lemma XI.1: If the POVM Q is rank-one !i.e. each element Qi can be written as Qi
= &wi*+wi&", then for any POVM P such that P$Q, also P is rank one, and Tr#Pi$=Tr#Qi$, ∀i.

Proof: Consider the following normalized vectors

&w̃i* =
1

1Ni

&wi*, Qi = Ni&w̃i*+w̃i& , !66"

where Ni=Tr#Qi$= 4wi42, whence (iNi=d. Suppose P$Q, and E!P"=Q. Then one can easily
verify the following identity:

Ni = Tr#Qi&w̃i*+w̃i&$ = Tr#E!Pi"&w̃i*+w̃i&$ = Tr#PiET!&w̃i*+w̃i&"$ . !67"

Now, by the CPT property of ET, ET!&w̃i*+w̃i&" is a state and clearly the last expression in Eq. !67"
is less than or equal to the maximum eigenvalue &M!Pi" of Pi. We have than the following
situation:

Ni ! &M!Pi" ! Tr#Pi$ . !68"

By the normalization and positivity of POVMs, we have that d=(iNi=(iTr#Pi$ and Ni#0,
Tr#Pi$#0. These conditions along with Eq. !68" imply

Ni ) Tr#Pi$ ∀ i , !69"

and this in turn implies &M!Pi"=Tr#Pi$, namely Pi is rank one. #
We will now prove the following theorem.
Theorem XI.2: If Q is rank one, then P$Q iff P,UQ. Namely, rank-one POVMs are clean.
Proof: First, notice that by Lemma XI.1, P$Q implies that P is rank one with Tr#Pi$

=Tr#Qi$, for all i. We have then

Pi = &vi*+vi& = Mi&ṽi*+ṽi&, 4ṽi4 = 1, !70"
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Qi = &wi*+wi& = Mi&w̃i*+w̃i&, 4w̃i4 = 1, !71"

where Mi)Tr#Pi$=Tr#Qi$, consistently with Lemma XI.1. Now, by hypothesis we have

Mi = Tr#E!Pi"&w̃i*+w̃i&$ = Tr#PiET!&w̃i*+w̃i&"$ = Mi Tr#&ṽi*+ṽi&ET!&w̃i*+w̃i&"$ . !72"

As a consequence, necessarily Tr#&ṽi*+ṽi&ET!&w̃i*+w̃i&"$=1, and by CPT property of ET this implies
ET!&w̃i*+w̃i&")&ṽi*+ṽi&. Notice that since ET!I"=(iMiET!&w̃i*+w̃i&"=(iMi&ṽi*+ṽi&= I, then ET and E are
unital, namely both CPT and CPI. Then, by applying Theorem III.3 one has P,UQ. The converse
is trivial. #

XII. CONCLUSIONS

In this paper we have introduced the notion of clean POVMs, namely which are not irrevers-
ibly connected to another POVM via a quantum channel. We used the adjective clean for such
POVMs in the sense that they are not affected by extrinsical quantum noise from the action of a
channel which is in principle avoidable. We have seen that, quite unexpectedly, the cleanness
property is largely unrelated to the convex structure of POVMs, and there are clean POVMs that
are not extremal and extremal POVMs that are not clean.

The classification problem of POVMs cleanness turned out to be much harder than that of
their extremality, and in this paper we gave a complete classification of clean POVMs only for
number n of outcomes n!d !d dimension of the Hilbert space", whereas for n"d we gave a set
of either necessary or sufficient conditions, and an iff condition for the case of informationally
complete POVMs for n=d2. The difficulty for classifying the case n"d reflects analogous diffi-
culties in the theory of quantum measurements in assessing the maximal POVM cardinality
needed to attain the accessible information, cardinality whose lower bound has been shown to be
actually larger than d.18,19

The novel issue of clean POVMs naturally opens new problems in the theory of quantum
information and quantum measurements. Besides the problem of the general classification of
cleanness, it raises the problem of characterizing all POVMs achievable from a given one via a
quantum channel, or, reversely, of all POVMs which can be evolved toward a given one via a
quantum channel. These are only initial steps toward a thorough analysis of the general problem
of the partial ordering induced by channels on the convex set of measurements, an issue which is
not an academic mathematical problem, but which is relevant for engineering new quantum
measurements with minimal available resources.
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