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Hamiltonians for the photon-number-phase amplifiers

G. M. D’Ariano*
Dipartimento di Fisica “Alessandro Volta,” Universita degli Studi di Pavia via A. Bassi 6, I-27100 Pavia, ltaly
(Received 20 May 1991)

Hamiltonians attaining number-phase amplification are presented. The amplification is driven by
a peculiar dependence of the polarization on the phase of the field in a limited frequency range.

PACS number(s): 42.50.Dv

The photon-number amplifier is a device which, ideally,
would effect the state transformation

In) — |Gn) , (1)

for an integer G > 1, thus preserving the direct-detection
signal-to-noise ratio. This kind of amplifier has been re-
cently proposed by Yuen [1-4], who suggested physical
approximate schemes and pointed out many applications
in quantum optics, using either nonclassical or conven-
tional light. Essentially, the number amplifier would pro-
vide the appropriate optical preamplification to make an
efficient direct-detection receiver and transceiver [3], en-
abling the realization of nearly lossless optical taps. In
particular, it is suited to design transparent optical net-
works, especially for short-haul communications which
utilize nearly number states in order to achieve the ulti-
mate channel capacity of the field [4].

In this article I present number-amplifying Hamiltoni-
ans which could be exploited in planning a real device.
In the present treatment the amplifier is considered ideal
also with respect to the amplification of the phase @,
the observable which is conjugated with the number. In
a way analogous to phase-sensitive amplification—where
two conjugated quadrature components of the electric
field are inversely amplified—here the phase and num-
ber observables both undergo ideal amplification, pre-
serving their uncertainty product. In this fashion the
state transformation (1), involving only number eigen-
states, becomes too restrictive. Therefore, as a definition
of the number amplification, I adopt the Heisenberg evo-
lution

A — G, (2)

whereas the state of the field is described in general by a
density matrix p. Another point which I consider is the
possibility of deamplifying 7, namely of amplifying 7 by
a noninteger gain G < 1. The integer-valued nature of
7 breaks the symmetry between amplification and deam-
plification, in that it forbids exact deamplification. The
transformation (2) can be generalized to the following
one:

i — [GA], (3)

which is defined for real gains G ([z] denotes the inte-
ger part of 2). The transformation (3) coincides with (2)
for integer G. In the following I will show that only the
cases G =(integer) and G =(inverse of integer) lead to
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unitary evolutions, the second case corresponding to the
ideal amplifier used in the output-input reversed direc-
tion. [Notice that the composition of maps (3) with dif-
ferent G—which corresponds to put amplifiers in series—
does not lead in general to a map of the same form (3)
with rational G.]

Regarding the amplification of the phase, a good def-
inition of the phase variable should be adopted, which
gives the correct statistics for all functions of the phase
variable. This is provided by the optimum probability
operator measure (POM) (7]

= i(n—n"yp 49
dP@)= D In)e' o (n'], @
n,n'=0

which defines the phase operator as

&:/” 0dP(6), (5)

-7

and accordingly gives the functions of the phase variable
as

i=[ sora. (6)

The mean value of the quantity f in a state p is evalu-
ated, as usual, as Tr[ﬁf] One can see that the operators
proposed previously by Susskind-Glogower (8] give the
correct mean value for f(¢) = e'"%, for integer »

(Bs) = /_ " ¥ p(dg) | )

E4 being the shift operators Exln) = [n £ 1) (a =
E~71/? gives the polar decomposition of the annihila-

tion operator). One has also %(E_ + E4) = f where in
(@) = cos ¢, and %(E- — E}) = f where f(¢) = sin ¢,
but [%(E_ + EL)]" # f with f(¢) = cos” ¢, and every

other operator functional f should be evaluated through
Eq. (6) in the general case. In the above framework, I

say that the transformation Sg) in the Heisenberg pic-
ture amplifies the phase variable by the gain r when

sPhH=a, 99)=1re), (8)
for periodic functions f(6 + 2w) = f(#). Analogously,
Sg/r) deamplifies the phase variable by the gain 1/r
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when

SHDF =g, 9(¢)=f(@/r). 9)
for f(6 + 27 /7) = f(6).

One of the major difficulties encountered in the
quantum-mechanical treatment of number amplification
is related to the nonunitarity of the transformations (1)-
(3). This can be simply understood by considering that
{|Gn)} span only a proper subspace of the Fock space
F (which is spanned by {|n)}). As already suggested in
Ref. [2], a way to overcome this problem is to consider
an auxiliary degree of freedom and construct a unitary
operator on an enlarged Hilbert space F ® H’, H' being
infinite dimensional. Here I follow this procedure by first
noticing that the transformation (3) is a unit-preserving
completely positive map (CP map) [5,6]. CP maps are
used to describe the subdynamics of the open quantum
systems. A unit-preserving CP map has the general form

T(0)= ) VIOV, (10)
where
S Vive=1. (11)

The space of the CP maps is closed under (i) convex
combination ), p;7;; (ii) composition 7;73; (iii) tensor
product 7; ® Tp; (iv) partial trace; namely, if 7 is CP on
F1 ® F3 and p9 is a density operator on F3, then

T1(0) = Tra[p2 T (O ® 1)] (12)
is CP on F;. The last point means that if one has a
unitary evolution in a closed system and if subdynamics
on a (open) subsystem can be defined—i.e., partial trace
on the subsystem degrees of freedom—then these subdy-
namics are CP maps. In some cases it is also possible to
reconstruct unitary evolutions on enlarged systems cor-
responding to a given CP map. For example, if V,, satisfy
the orthogonality relations

1
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VaV} = 6ap (13)
then the following operator is unitary on F, ® Fa, (F1 =
}éy

U=> Va@ W}, Wa=AV.B, (14)

a

Aand B being unitary operators on F,. The CP map in
Eq. (10) corresponds to the partial trace (12) where 7 is
the unitary evolution given by the operator (14). Here
I show that this is exactly the case of the phase-number
amplification given by Egs. (3), (8), and (9).

From Eq. (7) one can see that the transformation at-
taining the number deamplification (3) (G~! =, an in-
teger) and the phase amplification (8) should transform
the shift operators as follows:

SGUEL) = (Ba) . (15)

An outlook on Eq. (15) leads to the following CP map

[9]:

r—1
$P0) =Y (805,
A=0

(16)
R (o]

S&') = Z [n)(nr + A| .

n=0
The operators .§'f\r) satisfy the relations

r—1
Z(g/(\r))fgg") = 1 (completeness) , 17)
A=0
S"(\')(S',("))T = 6, (orthogonality) , (18)
S8E) = 572), (composition) . (19)

Equation (3), namely Sg)(ﬁ) = [A/r], follows trivially
from Eq. (15). The check of the phase amplification (8)
is more involved:

R 1 T oo r—1 )
S =gz [ 05O 3 S Il ) pr + An)mlar + 2)(a

n,m,p,g=0A=0
r—-1

=Y laPss [ d05@) 3 d0-0r*lpy (el =

A=0 -

g, 9(¢)=171(¢/r).

P,9=0

L wlean Zw i(p=0)
27 /_m dt9rf(9/ )p,qzoe o 0|P)(‘1|
(20)

Equations (17) and (18) allow one to obtain a unitary evolution corresponding to S};) by using the construction (14).
I consider the following operator U,y acting on the Fock space F ® F:

r—1
Uy =380 @ (St
A=0

(21)

Here the particular choice A= B =1 in Eq.(14) leads to a scheme of amplifier where the two input fields are inversely
amplified. The subdynamics of the first field correspond to Sg):

(U010 = Tr[(p1 @ p2) U}, (01 ® 1)Uy = Tra[5185°(01))] -

(22)
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The action of the operator U(,) in Eq. (21) on a number eigenstate is Uiryln,m) = |[n/r),mr + (n/r)), where
(z) = = — [z] denotes the fractional part of z. In a more symmetrical form one has

U(G_:)In, m) = |[Gn] + G(G™'m),[G™'m] + G~{Gn)) , (23)

which leads to integer numbers of photons only if either G or G~! is integer. The partial trace on the first field

r—1
(02) = Tr[(p1 ® p2)U[,(1® 02)Ur)) = Trz (/32 Z(Vf")'osz) (24)
A=0
produces another CP map (see also Ref. [10])
r—1
S570) = OV W = e ST e = {Inlaa(S7)IS12 (26)
A=0

which, due to the form of operators V)fr) depends on the state p; of the other field. The case of p; equal to the

vacuum state gives

SGH0) = ViOV, Vo= (S5 =3 Irn)nl
n=0

(26)

and corresponds to exact number amplification S}}/r)(fz) = ri.. The action of SE}/T) on the phase variable attains the

deamplification (9)

o) r—1

i) = [ 5210 Y Sl )+ Ajn)(mlgr + X)(g

n,m,p,g=0 A=0

g9(¢) = f(¢/r) -

The operator U(,) thus provides a unitary evolution on
F ® F where the subdynamics on the two Fock spaces
correspond to inverse phase-number amplifications. No-
tice that OJG) = 0(_6}) = 0((;_1), and the operator in-
version corresponds to interchanging the roles of the two
fields. The broken symmetry between number amplifica-
tion and deamplification here reflects on the fact that the
two fields undergo different CP maps, one of them being
dependent on the state of the fields, whereas the other
being independent [see Eqs. (16) and (25)].

In order to obtain the Hamiltonian of the amplifier
I rewrite the operator (21) in exponential form. Upon
denoting the particle operators of the two fields by al
and bt, namely

1n’n1) _ (at)n (bT)m I0,0) ’

T Val Vml

the operator U(,) can be written as follows:

(28)

~ ™ ™

Uiry = exp <5(a1b — bfa)> exp (—E(azr)b - bfa(r))> ,
(29)

where agr) = Sg)(aT) is a boson operator creating » pho-

tons at a time [11]

alyln) = VIn/rl+ 1n+71) .

(30)

™ de >, . 1 ™ 1 S
— 2 = i(p—q)ré - — - i(p—q)8
=) _leal /_W 27rf(f))p%;oe Ip) el = 5~ /_M do~f(6/r) e Ip){(4]

p,g=0
(27)

f

The representation (23) of the operator U(,) in Eq. (29)
can directly be checked using Egs. (28) and (30). The
product of exponentials in Eq. (29) corresponds to the
series of two four-port devices. The first exponential de-
scribes a parametric frequency converter from w, to wy,
with classical pump at frequency Q' = w, —ws, wq b being
the frequencies of the two quantum fields. The second
device corresponds to a phase-number amplifier which
simultaneously converts frequencies, having a classical
pump at frequency Q = rw, — wp. The corresponding
interaction Hamiltonian has the form

Hy = —ik(a{r)be"mt — blage'™) (31)

and the interaction length L is given by kL = #/2, k
being the gain coefficient per unit length.

The Hamiltonian (31) is quite complicated, due to the
presence of the multiboson operators a(,y and agr). How-
ever, for a high average number of photons (ata) > r the
multiboson operators behave asymptotically as

MR (CELEEE r)!)‘” (@)

Yy = ata!

=[ata/r]V?(ata — r +1)" 23 k.0 ~ Rral,  (32)
where

K (0) = r=3e=i=10 (33)
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Taking into account the pumpmg field also, the phase-
number amplifier would require a medium with a x(?
susceptibility and an interaction Hamiltonian of the form

Hy ~ Aipatbc 4+ He. (34)

¢ denoting the annihilator of the pumping field. From
Eq. (34) it follows that in order to attain phase-number
amplification one should use a x(?) medium having polar-
ization which depends on the phase of the field according
to (33) in a limited frequency range containing w,. The
amplifier gain r is involved only in the phase factor (33),
whereas the interaction length has to be tuned at the
complete conversion value L = 7r/2z\Ic1/2, I, being the av-
erage power flux of the (classical undepleted) pump and
Ao x. For 7 = 1 the usual parametric frequency con-
verter is obtained, and the two exponentials in (29) cancel
each other, leading to the identity operator. For r > 1
the phase-dependent coupling in Eq. (34) may also be re-
garded in terms of an intensity dependent coupling for a
x"*1) medium (as one can simply check using the polar
decomposition of the particle operators). In practice, for
a constant coupling one can tune the interaction length
as a function of the intensity, thus obtaining approximate
number amplification in the average values. For example,
for r = 2 one has ky = 273E* = (2afa) 2at. In this
way, 1f the usual degenerate-four-wave-mixing Hamilto-
nian (34) is considered

H; = x(a")%bc+He. (35)

(k « x®) an approximate gain-2 number amplifica-
tion can be attained upon choosing an interaction length

/(2m/I alc). Similar arguments hold for analo-
gous x("*1) amplifying media for r > 2, as in the reso-
nance fluorescence scheme proposed in Ref [1]. On the
other hand, the analytic form of the Hamiltonian (34)
also may suggest that improvements in the ideal behav-
ior of the amplifier could be attained through modula-
tion of the nonlinear susceptibility at wavelengths sub-
multiple of that carrying the amplified mode [see Eq.
(33)]. Very intense, localized, and highly nonlinear sus-
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ceptibilities could be obtained using quantum wells: this
may prefigure a quasiideal amplifier in the form of a
heterostructure-designed device. Work is in progress
along these lines.

I conclude with some remarks regarding the ideal
photon-number duplicator, which in some respect is very
similar to the gain-2 photon-number amplifier. Instead of
amplifying the number of photons, the ideal duplicator
produces two copies of the same input state for eigen-
states of the number operator. Such a device would be
extremely useful in local area network applications, be-
cause it provides a convenient realization of the quantum
nondemolition measurement of the photon number, and
in addition provides lossless optical taps superior to the
amplifier tap [4]. For the number duplicator the uni-
tary transformation can be obtained starting from the
CP map Sy (Ey) = E1 ® E4, which is strictly analogous
to (15). The technique of enlarging the Fock space by
using an extra auxiliary field leads to the Hamiltonian

(10]
H; = —ikal (max{b'h,ctc} + 1)"/2bce ™™ + H.c,,
(36)

where the classical undepleted pump has frequency Q =
wq — wp — w,. For an interaction length L = 7/(2x) the
Hamiltonian (36) attains the duplicating transformation
Uln,0,0) = |0,n,n) (the general representation of U is
more involved). When operating in two vacua, one can
substitute the function max{bb, c'c} in the Hamiltonian
(36) with either b'b or cfc, without changing the out-
put. In this fashion the Hamiltonian (36) becomes quite
similar to the Hamiltonian (34), the main difference be-
ing that the field in the phase-dependent frequency range
now splits into the two nondegenerate modes bearing the
replica states.
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