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Tield theories and renormalization group analyses have been proved very effec-
tive in studying the critical behaviour at phase fransitions. In general quamtom-
mechanical effects are not congidered in these theoretical approaches, becanse they are
difficult to take into account and in several cases they may be negligible, On the other
hand, psendozpin models have been proposed with gquantum S = L Hamillonians
for hydrogen-bonded erystals to deseribe the ferroelectric (1) order-disorder transitions
and for lattice gas models of the A-transition in superfluid *He (%). Thus it might
prove inferesting to derive a field Hamiltonian lor such models, in order to study their
eritical properties by the renormalization group approach. In this paper we show how
iti ig pos=ible to derive a clasaical Ising-type effective Hamiltonian for a § = } quantum
Hamiltonian of the form

(1} H=H;+ H, Hy=3 Hy; H’:E’H;f:
i i,

where IT,; is a one-spin Hamilbonian and HJ; is a btwo-spin interaction (the primed
summation symbol in (1) requires @ == j). The derived Ising Mamiltonian is « effec-
tive » in the sensc that it gives the same partition funetion for the system and con-
pequently the correct thermodynamics. Tt ean then be translormed into a field ITamil-
tonian by means of the standard Wilson’s (¥} procedure. The pussage from the quan-
tum-gtatistical mechanies problem fo the corresponding elassical one iz exaet in prin-
ciple and it ig made possible by the property thas spin operators are traccless. In prae-
tice the results in noncommutative algebra available thus far (% make the caleulation
possible only fo the second-order in #' and one must require that

(2) T

>

where || denotes the trace norm of the operators,
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Notice that if one ig intereated in model Hamiltoniang in which the dominant term
is the two-spin interaction, just the mean fleld gencralised procedure allows us to
rewrite the HMamiltonian in the form of eq. (1), with the condition (2) atizfied in ihe
small-fluetuation regime (]). We illostrate the proposed method for a model within
this elass: the Ising medel in trangverse feld.

Let us consider more in detail the general Hamiltonian (1) (4, § run from 1 to ),
All the operators in (1), as well as those to be considered in the following, belong to

=
the vector space p over € gencrated by the ring E= () o of the generalized Pauli
i
malrices, o being the ring of the Paunli matrices with the identity ¢ = o I h,
o =@, ¥, 2 In particular

(3) 6 =5 @18 . @ L OG5 G Tay
5
We consider also the sub-space p* of p generated by the Abelian subring ZF = (X o2,

1
where o = {0% I,}. The statistical mechanieal problom is elassical whenever I e 58
It is to be emphasized that, as the frace of a direet produet is the produnct of the traces,
all elements of p are fraceless except the multiples of the identity fep, where

n

I=1091,. A convenient basis for p is {7, }, where
ik

(4) Iy, =dak .. o

in

and A, = (i, 1,, ..., 4,3 oq, %, .oy o%,) 18 8 ordered multi-index (4, < i, < ...<i), 0 being
the number of spin operators in the product on the r.has, of (4): obviously =1,

The bhazis for the sub-space p* is written as {_J’Lﬂ}, where IL; = rrf] G AR
provided with a gcalar product

T {Pg)
(5) (P, Q) ==t Peh.

— Pelry
Upon expanding P and ¢ by means of the basis, we oblain

i ot 2 AR 2

A

6 Py = T P Qny—r e P
(6) 9= % Pulon —i f™ =T Pul

The identily (6) is true beeanse I'y = '3}, VA4, and, as mentioned before, the mul-
tiples of I are the only clements of p not traceless. Equation (6) guarantees that (5)
i3 indeed a sealar product. We have also that P, = (P, L)

We use now the mathematical framework infroduced above to compute the par-
tition function for the Hamiltonian (1):

(7) Z = Triexp[—fH]} = Tr{exp [— S(H, - )]} .

As Hy, H'ep do not commute with cach other, we introduce the operator Ve p
defined hy

(8) exp [ BH] = oxp [ BH,] exp [— BV,

(*) ) . Bozawo, M. Rasurti and M. VapnsoomiNo: Letl. Nuwovo Cimento, 24, 359 (10759
&) C. Duzaxo, M, Vabacomizo and M. Rasmrer: Ferroelectrics, 29, 11 (1580).
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¥ is evaluated by means of the inverse Backer-Campbell-Hansdorff formula recently
derived up to sceond order in H' (%), Using (7), (8) and the definition (5), we can write
the rvedueced partition funetion Z'= 2¥Z (where 2% = Tr{I}) as follows:

(9 Z'= (exp [— pH ). exp [— BV]) .

As H, is the sum of one-spin Hamiltoniang we can choose a suitable local rotation:

N
(1) F = XA, ;= oxp [0, 1.0%2] ,
1

such that H, = #1H,#<cp’. Denoting by 0 = #1102 the rotated operator corre-
gsponding to any O € p, we can write

(11) 7'= (exp [— pH,], exp [ V1) ,
because (P, ) = (P, @) due to the invariance of the traces under eyelic permutations.

We notice in (11) that only the projection 2. exp[— gV] onto p* of exp [— V] gives
a nonzero contribulion to 77 as exp [— fH,]cp®. Weo can then write

(12) Z' = (exp [— BH,], exp [—BVonl) s
where

1 o =
(13) T(::Ei:_'?? In # exp [— V]

and the projector P acts simply as follows:

(14) PP NP PJ;}FA; = ZPA;_I;: :
A% A

i

Now, sinee V. e p%, H, and V,;; commute and the partition function can he rewritten as

(15) % ="Trexp [— .ISHerrI s
whera
(16) Hap—Hy -l Fages

H.;ep* is now a classical Ising-type Hamillonian: we remark az well that it is
A-dependent through V.. Explicifly it has the general form

o l
L = ' simd A E z s 14 A
(17) Hoe= 3 ; Eo M O P e G tp=1.. 0.

=0t iy Tay Ty

Tor the Hamiltonian {17) one can use the Wilson's procedurs to wrile a field IMamil-
tonian. In the general case this may be conplicated by nonlocal inferactions (as eq. (17)
shows), depending on the form of the original Hamiltonian.
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Ag an exemplification, we outline the above procedure for the Ising model in trans-
verse field, which iz defined by the Hamiltonian

(18) H= 3 1ot~ 0F b3 bl Ju=0.
1 i

Fad

The Hamiltonian (18) ean be rewritten in the form of eq. (1), with the condition (2)
satisfied, by the generalized mean field procedure (*%). Denofing by I the spontaneous
polarization: ;

(19) 1= N3 000 s

let ng introduce the quantum fluctnations

(20) Sof = o; —IT.

H" is then defined as the pavt of H bilinear in the 3s;°s, namely

(21) H'=—L1% J, 80] 8oj .
1%
We obtain

(22a) H,, = y NAIT*— NAIs: — Q6% — h;07
(228) H); = —3Jd 050t + Allio? - af) — AIT*,

where 4 = N-1% J, . The condition (2) is satisficd in fhe small-fluctuation regime
| 8af] < |11]. i
The loeal rotation (10) is given by

(25) Ry = exp [i6,0%/2] ; 0, = avetg [Q/(NAIT 4 hy)]
and for the rotated ITamiltonian I7;€p® one hag

{24) H, = Nk, :—z Aol

where fiy = § NAIT® and 4d; = {Q% | (NAIT -+ Iy)%

The operator ¥ of the def. (8) can be written up to the second order in H' (novice;
fourth order in the 8¢%7s). One has

(25a) ¥V =V 4F+0EY,
I N N
#ad dedamd
{2’!”- Tf" L = H( 2 (5] g £3]
oc) i =Hy;+ > v e
=1
;: o ] U: o =1 (R o ) ]- E_}ﬂ {im=l] s o p .
@58) Vi = 35 Sy oWijml) + 5 < o8 Hiim) +
n=2 k=1 2 =nl

1.2 : ;
; Al s ndEe1l n=1)
T E (_)8”’:"1' : 1 1."51; 5 2 Ot ]} *
=1

wl(n 8!

(*) C. Buzavo, M. RasprTi and M. VabpacoHivo: Frog. Theor. Phys., to be published.
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where
(26ex) ol = [T [Hos Higls <on By )s B | 5
e brackets
(260) o {ig/tm} = [[[f [y, H;;]p Hy s v Hl)]s -H:nx}- Hﬂ]s “ees -Hu] .

E hraeketa k) brackets

% and p are rational numbers given in ref. (*).

Explieitly eomputing the Op(,] ator T, one ean che (,]-_c that, being [, F‘Ifj s
both p{’”J_ p% ¥n, 6,4 and o djiml) | g7 Vi g, m, L k<in—1 (where O 1 p# 18 a
shorthand nat.l‘rion to state (0, 'y = 0, VP e p?). Gompn’rmg Ve up to the first
order in H' (one must cnﬂ‘wl'-tfllﬂ“}’ expand up to the same order the In and exp fune-
tHons in eq. (13)), we obtain thus

(27) Vou = PpV'= 2.8’

and no true gquantum-mechanical effect is retained, beeause eq. (27) ig equivalent to
consider H, and ' as commuting, The resulting effective Hamiltonian is simply

(28) Hly=H,+ #:H = Z (Ai— NAIW) ot — } T T W W oba?, W=V 1—(2]4,)°.

‘?- i

On {he other hand, computing V,.; np to the second order in J', we write

(29) Vie= 2o, V'+ P V'~ —[uﬁ Pe— sV,
namely

¥ i’ r - Ly ﬁ 4 g i
(30) Hi=H.ut PV + 9 Lk et el

Wo see that the seeond-ovder contribution to M, implies the calenlation of cs{”]

together with their commutators ag well ag of o), elriiondy, However, the term quaduri-
& J'n’ »
linear in of turns out to be zero and finally 1T i reads

1
(31) Hl =3 AVai L z Mola += helaiar.
2 3!

The cocflicients 2™ even though not so simple as for H[, yet can be now written
explicitly. They involve rapidly convergent power series of the local fields A, (indeed
trazeendental or seneralized hypergeometrical functions). We do not write them ab
present: they will be reported in full detail elsewhere. The point we intend to ecom-
ment about here is that now the Wilson's procedure can be applied. It leads, for a
TMamiltonian of the form of HY; as given by (31), to a field Hamiltonian of the form

1
(32) # = (VP fP}Jr;fPs I "P +dJp+ NLT,
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where NLT denotes ¢ nonlocal terms . All parameters in eq. (32) depend on 7 and
are functionals of h(a) the continuum limit of k,. On the other hand, IT does not
enter the original Mamiltonian (18) and it has to be determined through eq. (19) which
in the present context assumes the form

a1
(33) B
olilx)

»
Rl{xi=0

where I is the generating functional of the eonnecfed diagrams. Moreover, it is worth
pointing out that {¢)> is not the order parameter I7, since J(x) is not equal to h{x).

One has then
)
da'= | (p(x > e
Rlxl=0 .

8 8J(x')
(34) I =
37 (&'} Shix)
Eqnation (34) is just the consequence of the loeal rotation (23). The solution of aq. (34)
looks like a very impressive task, but we want to emphasize, as a conclusion, that the
field Hamiltonian (32) describes the systemn in the low-temperature broken-symmetry
phase (at least when the condition (2) is satisfied).

da’ .

hix)= @

F & Gk
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