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Evaluation of multiphoton processes by means of Gaussian averages
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A method to evaluate matrix elements of anharmonic unitary operators when the usual expansion
techniques lead to nonconvergent series is suggested. This problem is particularly relevant in non-
linear quantum optics, when multiphoton processes are analyzed, and two examples of applications

in this case are given.

Multiphoton processes are presently of great interest in
quantum optics. For example, they are involved in the
optical Kerr effect, where the third-order nonlinear sus-
ceptibility leads to Hamiltonians that are quartic in the
creation or annihilation operators. Correspondingly,
strongly anharmonic interactions lead to non-Gaussian
wave packets and to non-Poissonian fields in the number
representation. The problem now is the knowledge of the
best tuning for all the parameters in the interaction Ham-
iltonian, in order to get highly squeezed and/or strongly
sub-Poissonian radiation. These states of the field are the
best candidates in a quantum nondemolition measure-
ment or in order to improve the quantum limit to the
signal-to-noise ratio."? The study of such many-photon
processes usually involves the problem of evaluating ma-
trix elements of anharmonic unitary operators between
coherent states, namely, matrix elements of the form

(alS,(g)1B)={(al exp(igh,)IB) , (1)

where A ¢ is a Hermitian polynomial in the Bose opera-
tors a, and a; (A=1,...,N) with powers up to k, and
la) and |B) are coherent states.

For k >2 (i.e., in the strictly anharmonic case) the gen-
erally adopted procedure to compute the matrix element
in Eq. (1) is the following: (i) Taylor expansion of the ex-
ponential; (ii) normal ordering of the boson operators; (iii)
evaluation of the generic matrix element of the expan-
sion; and then (iv) summation of the series.

However, the above procedure leads, in general, to
series that have zero radius of convergence.’ (This feature
is typical, for example, of the perturbation series for the
energy of quartic anharmonic oscillator.)

The first issue to emphasize is that the divergent series
is only a mathematical artifact. Indeed, the operator S,
is unitary and the matrix element does exist even though,
as a function of the coupling parameter g, it is singular in
g =0, and so it cannot be Taylor expanded [mathemati-
cally, one says that the vector |B)EB, where B is a
Banach space, is not analytical for the operator ﬁk, as
the series expansion exp(tH, )|B) has zero radius of con-
vergence’]. Despite the fact that the divergence is only
an artifact, it still remains a serious problem. In fact, one
has only two possibilities: (a) to try to extract quantita-
tive informations from the divergent series expansion or
(b) to adopt a quite different procedure, avoiding in par-
ticular steps (i) and (iv).

Concerning the former option (i.e., extracting informa-
tions from the series) in some cases one can recognize the
divergent expansion as the asymptotic series of some
known function in the neighborhood of g =0. Further-
more, if this is not the case, there are some methods of
analytic continuation available, like, for example, the
Borel summations,® in which the divergent series is
rewritten in terms of integrals of (the analytic continua-
tion of nonuniformly) convergent series; or the Padé ap-
proximants, where the Taylor truncated series is matched
with a rational function, which tends to reproduce the
pole structure limiting the Taylor expansion convergence.
(An application of the latter method in the case of a cubic
and quartic operator can be found in Ref. 7.)

If one chooses the latter option, i.e., avoiding Taylor
expansion, one is forced to avoid step (ii) too. In fact,
normal ordering techniques can be applied in this case
only when it is possible to compute the inverse Baker-
Campbell-Hausdorff formula. As it is know, this can not
be achieved for k <2 (the boson algebra that one should
handle is actually infinitely dimensional), the only
nonharmonic Hamiltonian that can be treated in this way
involves multiphoton operators (see Ref. 8 and references
therein). Furthermore, D’Ariano, Rasetti, and Vadacchi-
no’ pointed out that there is a deep relation between the
singular behavior of the S matrix and the phenomenon of
breaking coherence. Indeed the coherence-preserving
Hamiltonians A x are bilinear in a, and a{, i.e., they are
harmonical.

The last remaining possibility is now to avoid the nor-
mal ordering step. Of course, this can be achieved when,
for example, one is able to diagonalize the operator H, .

Here we want to suggest an alternative procedure
avoiding expansion in the coupling parameter. The
essential idea of such a procedure can be already found in
Ref. 10, where, however, the method is analyzed no fur-
ther, and a different approach is used in the analytical
solution of a four-photon model. As a matter of fact, the
major advantages of the present procedure can be found
in performing numerical evaluations.

The method reduces the problem to integration of rap-
idly converging Gaussians that can be easily carried out
(whereas the Padé approximants or the Borel summabili-
ty require sophisticated procedure and software). The
generality of the method suffers the restriction that the
Hamiltonian H, is required to be the square of another
Hermitian operator 4 k)2
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A =(4:,)", (2)

and the procedure is very easy to handle in the case of
Hamiltonians which are perfect squares of polynomial
operators in a; and a,. However, this special class of
Hamiltonians is interesting in itself since some relevant
high-g behaviors of the S matrix can be generally inferred
from the higher-degree part of the Hamiltonians.> A fur-
ther limitation of the method is the fact that, in order to
concretely improve convergence, one needs to know the
analytic continuation ®(x) of the matrix element of
(al explix A, ,,)|B) in the complex x plane. (For cases in
which the analytic continuation cannot be done by in-
spection, one may use a conformal transformation.®) The
method could certainly be extended to more general situ-
ations, to the disadvantage of simplicity. Therefore we
prefer to present it in its crudest form, also considering
that the simple examples which we will show are already
suitable for some interesting applications in quantum op-
tics.

The key idea is that the Gaussian averaging procedure

maps g —g |, and one can take advantage of the follow-
ing identity:
explig (4} ;)]
= [ Tdx——=exp|i|x4 T 3)
= xp |i _x .7
‘/ 4rg p k/2 4g ' 4

Equation (3) holds trivially true if A, ,2 is a real number;
nevertheless, it still holds if Ak ,2 is a Hermitian operator
because all operators in the equation commute. One can
observe that Eq. (3) is nothing but the usual Gaussian
identity (like the Hubbard-Stratanovic mapping'!), but
Wick rotated, in the complex g plane to imaginary “tem-
peratures” g !

2

—1— exp ix//fk/z—g

Viang

A +
exp[ —g (4, ,)*]= f_w dx

(4)

If one talA<es matrix elements—in the domain of the
operator A, ,,—on both sides of the identity (4),

<alexp['—g(2k/2)2]|ﬁ>
= f+°°d ——p———i—/—i‘ﬁ—(alexp U‘Ak/z g), )

one can easily check that the integral in the right-hand
side of Eq. (5) is bounded because the integrand matrix
element has a modulus smaller than 1. On the other
hand, the non-Euclidean Wick rotated version of Eq. (5)

(al eXp[ig(z‘,‘\k/2)2]|B)

exp |—i |- T
+ 4g 4
= f dx —
— Viang
X {a| explix A ,)|B) (6)

leads to a convergent oscillating integral, if the same ma-
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trix element does not oscillate as fast as to compensate
Gaussian exponential. However, the convergence of the
integral in Eq. (3) could be, in general, a serious numeri-
cal problem. In fact, the integral is an improper one and,
at least, the pure Gaussian oscillating phase converges as
t 12 which requires a quadratic number of steps to
linearly improve convergence. The elimination of Gauss-
ian oscillations could be attained performing a new kind
of Wick’s rotation which now involves the coupling pa-
rameter of the operator Ak ,»— instead of (A,< ) —
namely, a rotation in the complex x plane

x—e ¥x, 05¢<w/2. 7

One also needs the analytic continuation ®(x) of the ma-
trix element on the right-hand side of Eq. (6) from the
real axis to the complex plane

®(x)={al explix /?k/z)|[3')(analytic continuation) .  (8)

When ®(x) satisfies the following requirements: (i) ®(x)
has no branching points or poles in the two acute angles
of the x plane between the real axis and the straight line
forming an angle —¢ with it and (ii) |®(x)| does not in-
crease faster than the Gaussian weight itself for |x|— o,
at least in the region of plane of item (i); then one can
subsitute the integral on the real axis with the integral (of
the analytic continuation) on the straight line forming an
angle —¢ with the real axis itself, optimizing the free pa-
rameter ¢ in order to improve convergence. In the typi-
cal case of nonoscillating ®(x), one chooses ¢=1/4.
After further rescaling x, one can put the identity in the
form

(al explig (4, ,)?]B)= fjwdxe_ ®(2Vige i) .

« Vi
9

Two simple examples of applications that are relevant
in the field of nonlinear quantum optics are now dis-
cussed. In these examples we analyze quartic Hamiltoni-
ans H 4 which are perfect squares of polynomial Hamil-
tonians A »» nevertheless describing interactions between
many oscillator modes. Only vacuum-to-vacuum S ma-
trix elements are presented, even though the general ma-
trix elements between coherent states can be computed
without adding any serious complication. Such matrix
elements allow the calculation of the so called quasiproba-
bility distribution function in several cases of interest.

(a) Many-modes degenerate four-photon parametric
amplifier. The interaction Hamiltonian is
2

N
2 (a,+a})? (10)

=1
3

[For N =2 the Hamiltonian (10) can be used to analyze
an interesting case of nonlinear Mach-Zehender inter-
ferometer.?] The Taylor expansion for the S matrix vacu-
um expectation value leads to the series’

"(N +4n —2)1

(OyISsl0y)= 3 & RN —20

n=0

i
7 (11)
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which has zero radius of convergence. The series in Eq.
(11) can be recognized as the asymptotic expansion about
g =0 of the function

8g
XD—n/z(("‘Zig)_l/z) , (12)

(0N|§4‘0N>=( _Zig)ANM exp

where D, (z) denotes the parabolic cylinder function,'?
which is regular at infinity (g —0). Using the method I
propose, or the Gaussian average method, one has to
compute the integral

exp—i ﬁ—l
A + oo 4g 4
(0y|S.l0y)= d S
o= 77—
N
X{Oylexp |ix 3 g% |l0y), (13)
A=1

where §, =1/V'2(a; +a]). The matrix element on the
right-hand side of Eq. (13) can be factorized into single-
mode terms

8

and the single-mode vacuum expectation value can be
evaluated by means of the spectral decomposition of the
operator §

<0'eixa2|0)= f+eo dq‘—/lre — g +ixq?
—w s

N
ix 2@%

A=1

exp

0N>=(0|exp(ix@2)|O)N, (14)

B
Vi—ix’

~ |otherwise does not exist . (15)

if Imx>—1

From Egs. (14) and (15) one obtains the analytic con-
tinuation ®(x) of the N-modes matrix element

®(x)=(1—ix)"N¥? (complex x) , (16)

which satisfies the right requirements to perform the x
Wick’s rotation (it has only a branching pole on the nega-
tive imaginary axis and decreases to zero for |x|— ).
Using a ¢ =1 /4 rotation, one obtains the final result suit-
able for numeric integration

x2 _ .
(ON‘§4]0N)= fjwdx e‘/; (142Vge 37/4)"N/2

(17)

This example can be straightforwardly generalized put-
ting different real weights for the oscillator modes; the re-
sulting function ®(x) becomes simply a product of in-
verse square roots as in Eq. (15). New singular points will
appear, but all of them lie on the imaginary axis (see also
the next example). Consequently, also in this case the x
Wick’s rotation can be performed. In Fig. 1 we show the
numerical evaluation of the matrix element in Eq. (17)
versus g for some values of N; the calculation needed only
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FIG. 1. Numerical evaluation of the vacuum expectation
value of the S operator corresponding to the Hamiltonian in Eq.
(17) vs the coupling parameter g and for some values of N
(=1,2,4,10). The calculation utilizes Eq. (20).

2 h of a personal computer CPU time (and approximately
the same time will be necessary for any other of the
present examples).

(b) Many-modes fourth-order parametric down conver-
sion. The interaction Hamiltonian is

2
) (18)

N

+
S z,(a) ) +z}al
A=1

A,=

4
3y

where z, are complex number. [Some cases in the same
class of Hamiltonian (18) are studied in Refs. 10 and 13.]
The analytic continuation ®(x) can be immediately eval-
uated using the single oscillator matrix element®

<o exp [iZ[z(a' R +2%?] O>=cosh(|z|x) (19)
leading to
N
®(x)= [] [cosh(|z,|x)]71/%. (20)
A=l

Also in this case the analytic continuation satisfies the
right requirements which allow the x Wick’s rotation.
[In fact, the function in Eq. (20) has only branching poles
on the imaginary axis and grows slower than the Gauss-
ian weight.] So one can improve convergence using a
Wick’s rotation with ¢ == /4, obtaining the final result



5242

(0y18,104)

=t

—x2

N a .
[T [ cosh(2Vg |z;]e ~""/4x)] 7172 .
A=

21
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