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We construct a large class of squeezed states realized in terms of density matrices. The moments
of the canonical variable § and the number operator A distributions are analytically evaluated. The
new states can be simultaneously squeezed in § and A to any desired amount and exhibit almost
Gaussian shape in the former and strongly sub-Poisson distribution in the latter. The probability
distributions can be synthetically characterized in terms of the fractional-photon index introduced
by Katriel, Rassetti, and Solomon [Phys. Rev. D 35, 1248 (1987)].

I. INTRODUCTION

Nonclassical properties of special photon states have
recently been given a great deal of attention. Among the
typical quantum effects which characterize the nonclassi-
cal states, two have received most attention, in view of
the possible improvement of the signal-to-noise ratio in
optical communications and in the interferometric detec-
tors. The first effect is squeezing, in which the uncertain-
ty of one of the two quadrature components of the field is
reduced under the coherent-state value (the other quadra-
ture component obviously exhibits increased fluctuations
due to Heisenberg’s uncertainty principle). The second
effect is the sub-Poissonian photon statistics, in which the
number distribution is narrower than the Poisson distri-
bution.

The schemes which have been suggested and/or used
to generate squeezed states (see, for example, Refs. 1-6)
are essentially based on nonlinear optical processes where
the field interacts with matter characterized by nonlinear
polarizability (kth-order susceptibility in the general
case). This corresponds to producing k-photon states®
(i.e., states in which multiple of k photons are created
from the vacuum), such as the usual two-photon squeezed
states.””® Schemes have been proposed to also produce
strongly sub-Poisson states,”!® even if the ordinary
squeezed states can exhibit sub-Poisson photon statistics.
The improvement in number fluctuations reduction in-
creases the noise in phase, leading to the so-called ampli-
tude squeezed states.’ Also the schemes to produce such
states are based on nonlinear effects and multiphoton
processes are involved in the interaction Hamiltonian.

Thus new interest has surfaced in the k-photon pro-
cesses and in the relationships between squeezing and
number fluctuations. On the other hand, the theoretical
studies of k-photon squeezing in the general case, i.e.,
also for k > 2, run into unexpected difficulties. The first
generalizations by the simplest ansatz!! cannot be han-
dled by analytical techniques as the normal ordering and
Taylor expansions methods lead to series which have a
zero radius of convergence. The problem can be partly
overcome from the computational point of view using
Padé approximants.® The non-naive way to define k-
photon states have been subsequently proposed by
D’Ariano and co-workers'>”!7 based on the Brandt-
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Greenberg!®  multiphoton  operators and  group-
theoretical coherent states. These states, allowing analyt-
ical calculations of the probability distributions, lead to
interesting unexpected relationships between canonical §
and number 7 moments in form of universal scaling laws,
depending only on the photon index k. !

In this paper a new larger class of squeezed states is
presented, which are mixed states realized in terms of
suitable density matrices and which reduce to the previ-
ous ones in special cases. The large number of parame-
ters involved allows one to achieve a fine tuning of the
probability distributions to match the experimental re-
quirements. Furthermore, all the states can be syntheti-
cally characterized in terms of the “fractional photon in-
dex” ¢t '=h/k,'”® the matrix elements of h-photon
operators between k-photon states depending only on it.
Here we perform a thorough analysis of the probability
distribution functions for the particular case of 1/r
coherent states (where r is an integer), showing that they
are squeezed in the canonical variable § and exhibit sub-
Poissonian statistics. Moreover, both of the preceding
properties can be attained to any extent by reducing
t=1/r. In fact both the minimum value of (Ag)?* and
(An)?/(A) are equal to 1/r; this result leads to a nice
phenomenological interpretation of § and 7 squeezing in
terms of photon fractioning. On the other hand, the
sub-Poisson character should be compared with the one
concerning the usual squeezed states— where (An )? is re-
stricted by {(# )?/3—and the one relative to the amplitude
squeezed states defined by Kitagawa and Yamamoto’
which attain a minimum variance proportional to
(A3,

In Sec. IT we recall some algebraic background. In Sec.
III the fractional boson probability distributions are in-
troduced and the related density matrices are explicitly
written. The properties of 1/r coherent states are de-
rived in Sec. IV and the probability distributions are ana-
lyzed. In Appendix A, B, and C some asymptotic evalua-
tions, involving nonstandard techniques, are reported.

II. ALGEBRAIC BACKGROUND

Brandt and Greenberg introduced in Ref. 18 new Bose
operators b, and b:rk) satisfying the commutation rela-
tions
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[buybinl=1, @.1)
[A,bx]=—kby, , 2.2)
where A =a'a is the usual number operator. Equations

(2.1) and (2.2) show that b ;, and b(k, are annihilation and
creation operators of k£ photons simultaneously (notice
that b,;,=a, but b 7a* for k >2).

From (2.1) and (2.2) one can derive the normal-ordered
representation

b= zaﬂ-")(awja”k , (2.3)

=0
where
1/2

e %H
L(—1)Y" i¢

(.k)__. ! . 4

D e A T I @4

In Eq. (2.4) [[x]] denotes the maximum integer =x,
whereas the phases ¢;,, /| =0,...,j are arbitrary real
numbers

In the Fock space b, and b:rk) operate as follows:

bylsk+A)=Vs (s =Dk +A),
bl lsk+A)=VsF1|(s + Dk +1) ,

(2.5a)
(2.5b)

where 0<A<k —1.

From Egs. (2.5) one can notice that the Fock space
splits into k orthogonal subspaces which are invariant
under the action of the k-photon operators; the generic
Fock state |sk +A) is thus labeled by two quantum num-
bers s and A, which are the elgenvalues of the complete
set of commuting operators b k)b(k, and D(k)—afa

kb(k)bu(

blbulsk +A)=s|sk +1) ,
D lsk+1)=Alsk+1) .

(2.6a)
(2.6b)

The natural extension of the previous construction is to
consider expectation values of the b,, and b:h, operators
between k-photon states. After a straightforward calcu-
lation one obtains (t =k /h)

Ckm (b)) (b)) kn )

([[tn +u—v]P[[tn]IN'? A
[[zn —v]]!

o([[tn]]—v)d

m,n+(u—uvlt (27)
where A(x)=1 if x is integer and A(x)=0 otherwise and
O(x) denotes the usual Heaviside function [O(x)=1 for
x 20 and ©(x)=0 for x <0)].

From Eq. (2.7) it appears evident that the matrix ele-
ments depend only on ¢t “!=k /h and not explicitly on k
or h. This fact suggested to Katriel, Rasetti, and Solo-
mon'? the introduction of the notion of fractional photon
index characterizing probability distributions (mdeed it
is impossible to define fractional boson operators b(,,/k)
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and b, /., and consequently fractional boson states as

hk) = bL,/,\)b(h/k) eigenstates). In Ref. 19 the fraction-
al photon coherent probability are defined selecting a
coherent basis in the k-photon Fock space

o), = lol’r2 i
(s)

n
2 |sn)
n=0 n!

(2.8)

or in general using group theoretical coherent states us-
ing k-photon Holstein-Primakoff realizations of the
group generators. In Sec. III we will show how we can
exactly construct density matrices which have the
fractional-photon-probability distributions.

III. STATISTICAL FRACTIONAL-PHOTON STATES

In the previous scheme the fractional-boson plcture is
obtained defining new canonical variables Q(,, and P

Q(m (b(h)""bm)) (3.1a)

ﬁ(m (b(h) b)), (3.1b)

\/ 2
and interpreting the Casimir operator ﬁ(h, as a hidden
observable; the number operator corresponds to
ﬁ(h)be,,)b(h,. For example, when 7 =2 and k=1 we
obtain the 1-boson picture and A=0,1 gives the “boson
fraction” quantum number.

The definition of the position Q(,,)-probability distribu-
tions for fractional photon states is based on the con-
struction of a complete set of eigenvectors for the two
mutually commuting operators Q,, and D,. The di-
agonalizing procedure is standard and gives the following
result:

10.0) =3 CAQIIh+1) ,
1=0

e 2 2H,(Q)

C Q)= ————
Q==

where H;(Q) are the usual Hermite polynomials of degree
I. One can easily check that

OmloA),
D(h)|Q}‘>(h)

:QlQ’A‘>(h) »
AQA) ) -

(3.3)

The next step is to consider a k-photon state in the k-
photon sector

|a)>(k): (34)

S o, [km)
m=0

and then to construct the probability distribution of the
canonical variable Q,, for the k-photon state |w)
(ks=h and t =k /h =s /r, with s and r relatively prime)
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h—1 h
PO)= 3 (@ Alw) where
A=0
2 1©,0) =3 |lh +1)(I|®) 3.7)

2 E [Im]]wm6<(tm)),)\/r

:[ E'wawm C[[,]]](Q)C[[,m]](Q)

X8 aryy, (tumyy (3.5)

where ( {x ) )=x —[[x]] denotes the fractional part of x.
Equation (3.5) shows clearly that the probability distribu-
tion depends only on ¢ and can be thus referred to as
fractional-photon-probability distribution. In order to
characterize completely a physical system in the fraction-
al boson picture it is necessary to a551gn the probability
distributions for every observable G)‘,,) (in particular for a
complete set of commuting operators).

We can generalize the above procedure, adopted for
Q n)» to any operator ®(,,) which is an analytic function of
by and b ), then commuting with the Casimir operator
D . The probability distribution for ®(h) is then written
as follows

1=0

and N|®) are the eigenstates for the operator 6=06,,,
which is the same function as ®(,,), now in the arguments
aand a’. For example, the number operator ﬁ(h, has the
probability distribution

h—1
Nif)(N): 2 |(h)<N,}»|w>(k)‘z
A=0

:12 O @111y, MO, N (Cum )y, (atyy - (3.8)
,m =0

Now we require that the observables describing the
physical system should be functions of the usual pamcle
operators a and a' instead of b, and b(h More precise-
ly, we look for a quantum state havmg the probability
distributions for the usual observables §= G)(, which are
identical to the fractional probabilities 7!(®) for any
observable @ -

The attempt to construct such a state leads us to recon-

TLO)=3 (O, ) y?, (3.6)  sider the distribution ‘T(w”(@) in the form
=0
J
r—1
=3 2 o{ollr +2) O O®Im ) (mr +Alw),,
A=0 I,m=0
% r—1
= 3 (10)XO] |3 (Im)(mr+ilo) ) (ollr+r){1]) ’il) . (3.9)
I,m =0 A=0
—
Equatlon (3.9) shows clearly that ‘T (@) is reproduced P 1(g)="Tr( ,q><q|A(r>
by the 6- -probability distribution of the following mixed ¢ B
state:? :2!<qlﬂ(;\”>|2
A=0
7 O)=Tr(|6)(6lp'"), (3.10) 1] w
=3 | 3 (gln)(nr+ilw),l?
with density matrix p'/’ given by A=0[n=0
r—1
r} =3 l{grlo)y?, (3.13)
ﬁx): b m(}\z))<ﬂ(kx)| ’ g (n\9q ol
A=0 (1) (1)
N, (m)=Tr(|n ) nlpy)
Q) = 2 Q) lm), (3.11) r—1
m=0 =3 (nlQ{)
Y, = mr+Alo) ) o
. _ : =3 10,17
with ¢, arbitrary phases. One can easily check that the =0
density matrix p'" is correctly normalized r—1
. =3 nr+ilw) )= 2 €A lw) gl
e r— A=0
Trp )= 0, P=|lo|*=1, (3.12)
R (3.14)

and that, for example, both § and # distributions repro-
duce the distributions (3.5) and (3.8), respectively,

We can thus conclude that all the fractional probabili-
ties can be realized by means of mixed states with a densi-
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ty matrix p'" given by Eq. (3.11): in the particular case
of integer ¢ (r =1 and s =¢) the pure multiboson states of
Refs. 12—17 are obtained. Thus the physical nature of
the fractional photon picture is essentially quantum sta-
tistical.

IV. FRACTIONAL COHERENT STATES

In this section we will focus our attention on the par-
ticular case of fractional coherent states, i.e., fractional
states obtained choosing |w ), as a coherent state. The
most interesting states are the 1/7 coherent states, in this
case the density matrix is given by

r—1 ®© mr+}nw*1r+k

B & (1.

A=0 Lm =0 Viimr +MIr + 1)

A(1/r) —
po'"=e

(4.1)

We observe that p'!/” is a periodic function of argw with

period 27 /r. The time evolution under the action of the
usua] harmonic oscillator Hamiltonian H = wo(afa+ 1)
maps @ in o exp[ —i(wy/r)t].

The probabilities (3.13) and (3.14) are rewritten explic-
itly

‘P(w(q Awlz E C,(q)C,, (@) *rl, rm
I,m=0
r—1 lw|2k
, 4.2)
EO V(rl +ANrm + 1)
r—1 2(rn +A)
(1) - —lol? |w\ 4.3
N, (n)=e )Z'o (rn+A) @3

We will show that these states exhibit very intriguing
physical features; they can be squeezed in one of the
canonical variables p or § (as already shown in Ref. 19).
Furthermore, they have quasi-Gaussian distributions and
have strongly sub-Poisson # fluctuations. Some analyti-
cal evaluations of first two moments for both distribu-

J

|2n

(aVy=e 1o’y 2 \/—n':_ (1+[[n/r1D"?,

n+r)
(a*a):e“wzz le [[n/r]],
n=0

ty2 = —lw\z *2r 1(0[2"
((a"?) 2 —'—*—‘/n—'(———'

The plots of )(w m vs p for some t are shown in Fig. 2
(the low-p part of the plot was numerically evaluated in
Ref. 19). One can see that in the low-p regime squeezing
increases as ! increases whereas one has the opposite be-
havior for large p. Moreover, in the limit p— o the
second moment behaves as asymptotically constant (see
Appendix A)

55 [(1+[[n/r1DQ2+[[n/r1D]*.
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tions will better clarify the physical meaning of the “frac-
tional photon index” ¢.

A. Position probability distributions and squeezing

Figure 1 represents the position probability distribu-
tion ’P‘w’)(q) versus g for argw = (i.e., in the direction of
best squeezing) for various values of p=|w| and . One
notices that the distributions deviate slightly from the
Gaussian shape, squeezing occurring mostly as Gaussian
narrowing. As one increases p, only small local maxima
appear on a tail of the distribution, resulting in a weak
asymmetry and this last feature becomes more and more
apparent as one reduces ¢. The average value of the dis-
tributions increases in the positive (negative) direction for
t ! even (odd). For fixed p and decreasing ¢ the distribu-
tion approaches the vacuum Gaussian, according to a
consistent physical interpretation of vacuum state as
complete photon fractioning. This last result can also be
analytically checked from Eq. (4.1) as follows:

mr+A_ xlr+A
p(O)_ llm e —|w]? 2 z [4] (0] <I|
A=0 I,m=0

Viimr +MIr+A)

= 7’“"2 < __|CL)| =
e 3 10y —(ol=[o)¢o] . (4.4)

A=0

Focusing our attention on squeezing, we evaluate the
second moment of the distributions (divided by the
Gaussian one)

2
M:1+2{(a+a)—l(a7)12
(ol(ag o)
+Re[((a"?)—(a")?)}, @5)
where the expectation values are statistical averages with
respect to p!1/"
(0)=Tr(p'""0) (4.6)
and are given by
(4.7a)
(4.7b)
(4.7¢)
[
Xow=t+0(p™?), (4.8)

the asymptotic squeezing going to zero like #; this last re-
sult gives a suggestive phenomenological interpretation of
squeezing as statistical photon fractioning. The apparent
contradiction between the last assertion and the previous
one—concerning vacuum state as complete photon
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FIG. 1. Fractional coherent state position probability distri-
bution P/(q) vs ¢ for argw= 1 and for various values of p=|w|
and ¢ (the fractional-photon index): the arrows indicating the
values of p are directed exactly at the distribution average value.

fractioning—can be understood if one considers that the
two limits, p— « and ¢ —0, do not commute; performing
firstly the p— oo limit the totally squeezed states is ob-
tained, whereas exchanging the limits the vacuum state
results.

B. Number probability distributions

Figure 3 shows the number probability distribution
MB(n) versus n for argw=m and for some values of
p=|o| and t (for the sake of comparison the usual
coherent states corresponding to ¢t =1 are included as
well). One can see that the fractional state has decreasing
mean number of photons for decreasing ¢, according to
the intuitive meaning of photon fractioning. Indeed, for
large p, an asymptotic evaluation gives the result (see Ap-
pendix B)

(R)=tp? 1+%p_2+0(p_4) , 4.9)

and the average number scales with the fractional index ¢
(at least asymptotically).

As regards the width of the distribution, one can notice
that smaller ¢ correspond to narrower distributions; sub-
Poisson behavior is evident comparing the fractional dis-
tributions with the # =1 coherent state distribution. In
Appendix B we compute the asymptotic behavior of the
variance for large p,

An=(a?)—(a))2=tp[1+0(p )] . 4.10)

By means of Egs. (4.9) and (4.10) we obtain the deviation
o from the Poisson distribution,

0.8

0.6~

0.4+

0.2

0 1 1 | ce1
0.1 05 1 5 10°
[}

FIG. 2. Dependence of the second moment Y'*’ on the
squeezing parameter p=|w| for argw =1 and for various values
of t; the asymptotes are those analytically evaluated in Appen-
dix A; the low-p part of the plot was numerically evaluated in
Ref. 19.
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_(An)?
()

which shows that sharper sub-Poisson behavior can be at-
tained by reducing ¢.

=t[1+0(p D], (4.11)

V. CONCLUSIONS

The class of mixed states constructed in this paper de-
pends on a large (in practice infinite) number of parame-
ter [besides ¢ and w one can change the Fock states |@)
in Eq. (3.11) using a general multiphoton state] and this
allows the probability distributions to be adapted to the
experimental ones. These latter exhibit the fractional
photon behavior formally introduced in Ref. 19 by means
of expectation values. For integer value of the fractional
photon index ¢ ~! the usual multiphoton squeezed states
are recovered. A thorough analysis of the probability
distribution functions corresponding to the fractional
coherent states shows that they are almost Gaussian, as
regards the canonical variables, and can attain any degree
of squeezing. Furthermore, they are sub-Poisson in the #
fluctuations. As a result we obtain a threefold physical
meaning for the “fractional photon index” ¢ (in the
squeezing regime): (i) it is the value of the best amount of
squeezing; (ii) it is a linear scale parameter for the aver-
age number value; (iii) it is the index of the sub-Poisson
behavior of the state. The preceding physical interpreta-
tion can be summarized in a phenomenological picture in

p=1

T 11 1 11
o
U!p.2
o
mp3
o
o
-

Ll
Pt e e e e b Ll
10 20 30 40

=
N 4 (c)
E uxulﬂlx
o uuuﬁj":\_\_\‘\s
(8 “
1+ a
v 0.5]
a
0.5]
t=1/3
NSNS IEE NN IR SNSRI NN
(¢] 30 40 50

FIG. 3. Number probability distribution .Ni:’(n) vs for n for argw =7 and for various values of p=

which ¢ and 7 squeezing are regarded as photon fraction-
ing.

As the fractional coherent states can be simultaneously
squeezed and sub-Poisson to any degree, one may suspect
that they should be amplitude squeezed states according
to the definition of Kitagowa and Yamamoto.® Some pre-
liminary numerical results on the quasi-probability-
distribution function seem to indicate that indeed this is
the case.
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APPENDIX A

In this appendix we study the asymptotic behavior of
the second moment y{?) for fractional states | ), in the
limit |w|— o with argo=m. The complete analytic ex-
pression of the second moment is given by

X2y =142e *F (x)—4e Zx'|F,(x)|?
+2e *x'F5(x) , (A1)
where x =|w|?, r=t"!
are written as follows:

, and the auxiliary functions F, (x)

N
a (b)
©w
i
a
m:OSF
Qf
< ﬂ
I Ll gl L1
- o5t E E T
a a I
1 X
_‘Tfos t]_LLiL_dJJ_rh‘_\—\_H_||
a
05|
t=1/2
O L e et e e el e p e bt e rei e p i iy
60 n
X 5 (d)
05

p=6

05| __,—'fLLL_‘
SN

Eﬁﬁ‘&#

NS N NN I N NN NN NN E |

(e} 10 20 30 40 50 n

t=1/4

|w| and t.
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Fl(X)_ 2
n=0
- S 172
F2<x)-n§0‘/n!(n+r)!<1+[[n/r]]) .
Fix)=S X ((1+[[n /P12 + ([ /rID}?
N ng'OVn!(n+2r)! .

In studying the asymptotic behavior of the functions
F,(x) one needs the following identities for Taylor expan-
sions of the form ¥ *_.c,h([[n/r]])x", where h(y) is
analytic in an integer neighbor of n /r,

I

= (—1)
=3

=0

S e h([n /r]Dx
n=0

r—1
X 2 dle——(Z‘tri/r)sd
d,s =0

Xf[(erTris/r) ,

=>c,h'" Il Jx”, (A3)
n=0 r

rV(p)=3"h (p)

Disregarding terms of order exp{x[cos(27/r)—1]} we
obtain the intermediate result

S x"n or—1 & x" e~ 1—r
F ~ ——— =— |x+ ,
1(x) ”g'on' r 2r Eon! r * 2
(A4a)
Fylx)~r~ 172 H[—rll/z, ~1/2,0(x)
1
o H[:]1/2 ,,,,, 12, -1(x) |, (A4b)
1 [2r
Fi(x) ?’,‘Hﬂ/z ..... 1/2(x)
L 2n
+7H—1/2 ,,,,, /2,172, —1/2,..., —120x),

(Ad4c)
where the functions H ,,,,, a (x) are defined as follows
(ay real):

nr*l
H . (x)—z [1 n+1+k) (A5)

In Appendix C an asymptotic expansion for the functions
H[’) . (x) is derived, which gives

llell+1
2

H (x)~xlelex 11+
(10 ,,,,, ar71

+O(x“2)] ,
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(A2a)

(A2b)

(A2c)

[

where ||a|| =3 _tax-

With the precedmg formula we can write the desired
asymptotic expansions for the functions F,(x),

X —
Fix~ |x+120 (A7a)
r 2
_ 1 {1—r2
F (x)~r*‘l/2x*(r 1)/26X 1+—
2 x 8
+o(x7)|, (A7b)
e* _ +1 1 1—r2 -2
Fy(x)~—x"" I+— |—— |+0(x"%)| . (AT7c)
r x 2
Collecting all terms in (A1) we obtain the final result
2 1—r x 1| 1=72
(2) < 41X 2 _r
X (1) 1+r x+ 4r 1+x 2
2
22 i+ |12 o
r x
~Lliomx? (A8)
’
APPENDIX B

We are interested in the analytic asymptotic evaluation
of the average number and variance of the fractional
states. Using the probability distribution (3.6) we can
write the complete analytic expression of {7 ) (t =1/r),

(A= * 3 [[m]PX . (B1)
n=0 n:

Using again the identities (A3) we can evaluate the sum

in Eq. (Bl) disregarding terms of order
exp{x[cos(27t)—11]},
q r—1 © xn
(fz‘q)=e_"2(—1)’{ SRR & E—Tn"*’
1=0 d=0 |n=0""
4 ; q r—1
=e *¥(—1) It S d xA, o (x),
=0 d=0
(B2)
where the function A,(x) is defined as follows:
2 (n+1) (B3)
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In Appendix C the function A,(x) is asymptotically eval-
uated. Inserting the result (C9) in the right-hand side of
(B2) we obtain

x '+0(x7?)

(R9)y=(1x)? (B4)

q
1+4
2

_1
77
The asymptotic expansions for average number and vari-
ance are thus given by

j4 i1

(A)=tx

x1+0(x2)] , (B5)

An=({a2)—(A))"?=1Vx[1+0(x " H]. (B6)

APPENDIX C
The asymptotic behavior of the functions

o« nr—1
(r] = “k
HY o (x) Eon-'kgo(nﬂﬂ) (C1)

X

is obtained expanding the product in powers of (n +1)" 1,
r—1
I +14+k)% = +1)
k=0
r—1
I+ +1)7" 3 kay
k=1

X

+0(n+1)"Y |, (C2)

where O((n +1)7?) denotes terms of order (n+1) 2
Putting (C2) into (C1) we have

r—1
HLrO] ..... otrfl(x):/\ua\‘(x)+ I\Ekak A*l+\a|\(x)’
c=1
(C3)
o0 x’l
Adx)=3 Z=(n+1).
n:()n!

The asymptotic behavior of the functions A,(x) can be
evaluated for a <0 by means of the following identity:

1867
1 B g
= "temlde, r>0, a<O0.
r F(—a)foe dt, r>0, a<0 (C4)
The functions A,(x) are thus written in integral form
— 1 *  —t,—a—1 —1
Aa(x)—mfo e 't exp(xe ')dt
— e 1 _ _ —a—1,—xz
—mfo[ In(1 Z)] e dz . (CS)
Expanding the logarithm in powers of z, one has
—a—1
eX 1 o zn -
A =— - — *d.
o) N—a) fo t,,z, n ¢ z
__ ex 1 —a—1 _ a+l1 2 —Xxz
_'F(ﬂa)foz ll > z+0(z7) |e Mdz .
(C6)

All the integrals in the (C6) expansion can be generated
deriving only the integral with respect to x,

_ ex a+1 2
A (x) M —a) 1+ 3 9, +0(a )}
1
X TaTle T X2gy 7
foz e z (C7)

The integral in (C7) can be asymptotically evaluated,
f lzmatle xgy ‘—“x"fxt Tatle gy
0 0

=xT(—a)[1+0(e ™)] . (C8)

The asymptotic behavior of A,(x) is thus obtained put-
ting (C8) into (C7)

Ayx)=x% |1+ 22D 1o |

(C9)

and by means of the preceding formula and Eq. (C3) one
finally writes the desired asymptotic expansion

l+0(x2)l. (C10)
X

We point out that expansions (C9) and (C10) can be analytically prolonged to positive values of a (||c]|, respectively) us-

ing the following trick
AB(X):(Xa_\, +1 )[[B]K+IA,1+<(/3)>(X) s

(C11)

which enables us to use both (C9) and (C10) for any real value of the parameters.
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