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New type of two-photon squeezed coherent states
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A new set of non-naive generalizations of the squeezed coherent states recently discussed by Fisher,
Nieto, and Sandberg is given, based on generalized Bose operators.

In a recent paper,! Fisher, Nieto, and Sandberg discuss
the properties of the unitary operators that generate the
squeezed coherent states. In particular they demonstrate
the impossibility of generalizing such states by means of
generalized squeeze operators of the form

Up=exp(idy) =explz (a" )5+ iy — (z)*a*], ¢))
k>2,
where
hy =Hermitian polynomial in a and a'
with power up to ¢ ,

due to the divergence of their vacuum expectation value
(0| U, |0) induced by the fact that |0) is not an analytic vec-
tor of the generator A in the Fock space.

In the present Comment we want to show that the con-
clusion of Ref. 1 can be modified if the k-photon creator a*
[and annihilator (a")*] as well as A_; in (1) are replaced
by infinite series. The puzzling feature is that the general-
ized states one obtains give one-photon and two-photon
squeezed states, whereas for many-photon states (k > 2)
the squeezing disappears. The construction of the new type
of unitary squeeze operator is based on the generalized mul-
tiphoton Bose operators of Brandt and Greenberg? which in
a normal-ordered representation are written as follows:

by = Zoaf(")(af)ja“" , ’ 0))
ji=
1/2
() = L (=) 1+11/k]) 9, ®3)
S & G=D U+ k)!

(where [x] denotes the greatest integer not exceeding x;
the phases 6, are arbitrary real numbers).

It should be noted that b()y=a but byy=a* for k=2.
Generalized Bose operators satisfy the commutation rela-
tions

[y, bl 1=1 , Y]
[Nbl=—kbw) . )

where N =a'a is the usual number operator. In the Fock
space they operate as k-particle creators or annihilators as
follows: :

bolsk +1) =s|(s—Dk+r) , (6a)
bl Isk +X)y =(s+ DY (s+ 1)k +A) -, (6b)

where 0 A<k
Our generic many-photon squeezed state can be written

loe, (zzw) iy) = D () Sy (z,w) [0) (7
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where the new squeezed operator is defined as
S(k)(z,w)=exp(zbfk) +I'WN—Z*b(k)) ) (8)

z€C, WER ,

whereas D («) is the usual displacement operator:
D(a)=exp(aa’—a*a), a€c . ©)]

The algebra of the operators bx),b{x), given by (4) and (5),
is isomorphic to the Weyl algebra: it is, therefore, straight-
forward to show that the time evolution of the state (7)
under the action of the usual harmonic-oscillator Hamiltoni-
an

H=kwo(N+ %) (10)
is given by
la(t), {z(t),w})(k)=e—(i/Z)wotlemo‘a,(e’kwotz,w))(k) . an
In other words the states |a, (z,w)) ) evolve in time ac-

cording to the classical equations of motion. Moreover, the
following formulas, which are derived in Appendix A, hold:

(a) =wa, (zw)lale, zw))w=2z , (12)
(a?) =22 +/28,pF (p?) , (13)
(NY=|z|*+kp? , (14)

where the function Fis defined by

V2n+1

F(x)=e"*3 —x", (15)
n=0 n:
and
1
sinskw
p=|z|—17— . (16)
—i—kw

In configuration space these new squeezed states are not
Gaussian wave packets. Their uncertainties can be easily
derived using Egs. (12)-(16) and are given by

(Ag)*= Tl‘gm,ﬂ{qb(t),p} , an
fi2002
(Ap)?= Al () +m,p) (18)
where
=% (19)
ao 7 ,
Agoyle (1), p) =1+2kp?+2vV258, ,c0s(dp)pF(p?) , (20)
1034 ©1985 The American Physical Society



32 COMMENTS 1035
and A

d=0¢(t)=argz+ +hkw+ kwot . @1 30—
The product of the uncertainties is therefore given by :g'
(8p)(Aq) = LL(1L+2kp")7— 8, 18 cos (§)p?F 2(p2) 112 < 20

(22) 5

From the inequality 9; 10

F(x)<(1+2x)"2 ¥x>0 (23) <s
proved in Appendix B, it follows that the product of the un- 00'0

certainties attains the minimum value #/2 for p =0, i.e.,

Aqu=% for w= 2_nk71_'_,

n€Zorz=0 . 24)
It is interesting to notice how, not only for z=0, the
squeezed state (7) coincides with the usual coherent state
la) =D(a)|0) (in that the squeezing operator S be-
comes trivially equivalent to the identity in its action over
[0)); but also, for arbitrary z=0, la,(z,2nw/k)) is a
minimum-uncertainty coherent state, even though different
from |a). The latter property has very interesting bearings
on the question of integrability of some highly nontrivial
nonlinear dynamical systems.*

On the other hand, for nonzero squeezing (p=0) the
product of uncertainties has a minimum value c (#/2) with ¢

arbitrarily close to one. The time dependence of the uncer- .

tainties is driven by the phase ¢(¢). From Egs. (17), (18),
and (22) we see that only for k =2 are the uncertainties not
constant in time and oscillate with a frequency kwq, as for
the ‘‘two-photon” squeezed state of quantum optics.
Furthermore, only for k=2 can one obtain for Ag or Ap
values separately lower than those of nonsqueezed states.
In order to illustrate more clearly the behavior of the uncer-
tainties with squeezing, we give the plots of the dimension-
less minimum uncertainty for g (or p) A)(m,p) vs p (Fig.
1), the minimum value of the product of the uncertainties,
[A2)(0,p)A) (7, p)] vs p (Fig. 2) and the loci in the com-
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FIG. 1. Plot of the dimensionless minimum uncertainty for g (or

p) Ay(m,p) vsp.

00

FIG. 2. Plot of the dimensionless minimum product of square
uncertainties A (3)(0,p)A3)(w,p) vs p.

plex { plane, {=pe’®, of constant values for A (¢,p)
(Fig. 3), and for [A(y(é,p)Ay(d+m,p)] (Fig. 4). In
Fig. 1 one observes that the coherent states |a, (z,w)) are
indeed squeezed in that the uncertainty of one single canon-
ical variable can be reduced to values smaller than that of
the usual coherent states. The most effective value pg of
the squeezing parameter is finite (pp~ 0.7) and corresponds
to a squeezing factor A(,) approximately equal to %—

On the other hand, for larger values of p the squeezing
factor becomes asymptotically constant, equal to 1‘; (see Ap-

pendix B). Such a behavior is sensibly different from that
of the usual squeezed states!:3 for which the squeezing fac-
tor can be reduced to zero only for infinite value of the
squeezing parameter. From Fig. 2 and Egs. (11) and (22)
one can notice that the product of uncertainties oscillates in
time with a minimum value which is always greater than
#/2; but corresponding to p = py the product of uncertainties
has a minimum value of about #/+/2. The frequency of os-
cillations in the uncertainties is twice that of the motion of
the wave packet in the complex plane (k times in general).
The curves of Fig. 4 are compared with the analogous
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FIG. 3. The locus in the complex plane pe’® of the solutions of
the equations A(;)(¢,p)=c? for c=2 (curve 1), c=3 (curve 2),
and ¢=5 (curve 3).
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FIG. 4. Full line: the locus in the complex plane pe’® of the

f(x) ,,§0 n'\/2n+
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(7) suggest that the latter might be squeezed in the general-
ized sense of Hong and Mandel’ even for k > 2.

This seems to depend mathematically on the finite dimen-
sion of the group generated by the squeezing operator Sx)
[notice that the algebras generated by the operator U of
(1) is finite only for k <2] and to depend physically on the
renormalization induced by the ‘‘dressing’ of the photon
pairs realized by the infinite series (2).

APPENDIX A

The squeezed vacuum
Sy (zw)]0) =expCiwN + zbfy —2*b4))10) (AD)

can be rewritten in the more convenient form

R
Sy (zw)|0) =expl— (iB)+ |¢(k)‘2)fz|2]e¢"‘)2b“‘)|0)

solutions of the equations A(z)(¢,p)A(y)(d+m,p)=c? for c=2 (A22)
(curve 1), ¢=3 (curve 2), and c=35 (curve 3). Broken line: the
same for the product of indeterminacies of Fisher, Nieto, and Sand- with
berg (Ref. 1).
sin(3-kw) ) ‘
b= —F—e? | (A2b)
curves for the two-boson squeezed states of Fisher, Nieto, Thw
and Sandberg. It is interesting to notice how the latter are kw — sinkw
not compact and show an asymptote for ¢ = nm, n € Z. 8= TTQ—‘ , (A2¢c)
As a last remark, it should be mentioned that preliminary .
_ results* on the moment-generating function for the states using the identities
]
exp(iwN + zb{y) — z*b(ry) =exp[ 1———— exp[-——-—Ad(zb(k) +z b(,,)]N] exp[ (| |)2 Likw+ (1— ™) ]
z + z* z*
X exp i—k;(l——e”“")b(k) exp i-};b(k) e™¥exp _i7c—v;b(") (A3)
Based on the definition
(@) = (01S{) (zw)a"Suy(zw)|0) + 2z (A%)
and the relations (6a) and (6b) as well as (A2a), one has
- 2 % n
S (zw)[0) = PO T2 3 & |+ (k=1)) (AS)
n=0 '\/;!
0,212 2 k( 1) 2
@S (zw)|0)y = "R S remt 2 ——’Li———~] kn + (k—2)) (A6)
n=0
where
{=dwz , (A7)
which follow in a straightforward manner from (A4)-(A6).
APPENDIX B
In this appendix we study the asymptotic behavior of the function introduced in Eq. (15):
F(x)—e”‘z '2"+ x"=e X[ f(x)+2x08xf(x)] . (B1)
Equation (B1) defines the more convenient auxiliary function
(B2)



32 COMMENTS 1037
Using the integral representation
L _ 1 (e
5T fo 7 dt (B3)
the function f (x) can be written
flx)= f dt exp(xe 2t) (B4)
By a straightforward change of variables (B4) transforms to
1 dze—% ex 1 2" —12
flx)= = -y
\/ Jo [(z—1DIn(1-2)1"2 2z Jo \/_ a1 n(n+1)
_ e ! dze—= 1 dze™ ™
== J, E 0 v o~ =1+ Lro ”f (BS)
r
which gives the desired asymptotic expansion provided one (B1) show that for all x
notices that
. F(x) <~+/T+2x (B8)
V dze—=
Jr Jo 7 \/_ —T=erf(Vx) ~ _f : (B6)  From Eq. (B7) one easily derives that
Inserting (B5) into (B1) one finds Ay, p)= —+ —4i-+ oG~ , (B9)
p
F(x)=v2x + —— \/7— +0(x~¥?) | (B7)  given the asymptotic behavior shown in Fig. 1.

Both the asymptotic expansion (B6) and the series in

By the same token the asymptotes of the curves in Fig. 3
can be seen to be + [F(2c2-1)]v2,

*Also at Gruppo Nazionale Struttura della Materia del Consiglio Na-
zionale delle Ricerche, Italy.
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